Spine
-
In vivo porcine study of intervertebral kinematics. ⋯ The results of these studies indicate that elevated intra-abdominal pressure, and contraction of diaphragm and transversus abdominis provide a mechanical contribution to the control of spinal intervertebral stiffness. Furthermore, the effect is modified by the muscular attachments to the spine.
-
The authors investigated the association of L5 proximal nerve root injury with spinal cord neuronal apoptosis (histologic) and whether exogenous erythropoietin therapy might reduce apoptosis/or pain (behavioral). ⋯ Our findings indicated that L5 proximal nerve root crush increased neuronal apoptosis in the superficial dorsal and ventral horn that correlated with mechanical allodynia. Exogenous recombinant human erythropoietin facilitated receptor-mediated neuroprotection of spinal cord neurons and faster recovery from mechanical allodynia. Erythropoietin may be a potential therapeutic factor for patients with low back pain by providing pain relief and neuroprotection.