Psychoneuroendocrinology
-
Psychoneuroendocrinology · May 2008
Comparative StudyThe role of the arginine vasopressin Avp1b receptor in the acute neuroendocrine action of antidepressants.
In times of stress the hypothalamic-pituitary-adrenal (HPA) axis is activated and releases two neurohormones, corticotropin-releasing hormone (Crh) and arginine vasopressin (Avp), to synergistically stimulate the secretion of adrenocorticotropin hormone (ACTH) from the anterior pituitary, culminating in a rise in circulating glucocorticoids. Avp mediates its actions at the Avp V1b receptor (Avpr1b) present on pituitary corticotropes. Dysregulation of the stress response is associated with the pathophysiology of depression and a major treatment involves increasing the availability of monamines at the synaptic cleft. ⋯ In contrast, fluoxetine treatment increased PVN Avp mRNA levels in female Avpr1b wild type but not KO animals. PVN Oxt mRNA levels increased in fluoxetine-treated female mice of both genotypes. The data suggests that the Avpr1b is required to drive the HPA axis response to acute antidepressant treatment and provides further evidence of a sexual dichotomy in the regulation of PVN Avp/Oxt gene expression following antidepressant administration.
-
Psychoneuroendocrinology · May 2008
Behavioral tolerance to endotoxin is enhanced by adaptation to winter photoperiods.
Seasonal changes in day length enhance or suppress aspects of immune function in mammals. Following adaptation to short, winter-like short photoperiods, cytokine and behavioral responses to lipopolysaccharide (LPS)-induced simulated infections are attenuated in LPS-naive Siberian hamsters. This experiment examined whether diminished initial responses to LPS in short days (SDs) are accompanied by decrements in the development of innate immunological memory that leads to endotoxin tolerance. ⋯ Thus despite engaging greater naive responses to LPS, LD hamsters exhibited incomplete LPS tolerance relative to SD hamsters. The expression of behavioral tolerance to endotoxin is relatively diminished during the breeding season, a time of year when naive responses to endotoxin are at their greatest. During winter, enhancements in behavioral endotoxin tolerance may conserve energy and facilitate survival in the face of energetically challenging conditions.