Neurochemical research
-
Neurochemical research · Jun 2021
Inhibitory Effects of Dexmedetomidine and Propofol on Gastrointestinal Tract Motility Involving Impaired Enteric Glia Ca2+ Response in Mice.
Propofol and dexmedetomidine are popular used for sedation in ICU, however, inadequate attention has been paid to their effect on gastrointestinal tract (GIT) motility. Present study aimed to compare the effect of propofol and dexmedetomidine on GIT motility at parallel level of sedation and explore the possible mechanism. Male C57BL/6 mice (8-10 weeks) were randomly divided into control, propofol and dexmedetomidine group. ⋯ Also, the amplitude (ΔF/F0) of Ca2+ response in primary enteric glia was attenuated after treated with the sedatives while the effect of dexmedetomidine was greater than propofol. These findings demonstrated that dexmedetomidine caused stronger inhibitory effects on GIT motility in sedative mice, which may involve impaired Ca2+ response in enteric glia. Hence, dexmedetomidine should be carefully applied especially for potential GIT dysmotility patient.
-
Neurochemical research · Mar 2021
Restraint Stress Potentiated Morphine Sensitization: Involvement of Dopamine Receptors within the Nucleus Accumbens.
Sensitization to psychostimulant drugs, as well as morphine, subjected to cross-sensitization with stress. The development of morphine sensitization is associated with enhancements in dopamine overflow in the Nucleus accumbens (NAc). This study aimed to examine the role of accumbal D1/D2-like dopamine receptors in restraint stress (RS) induced sensitization to morphine antinociceptive effects. ⋯ After that, on the 9th day, the nociceptive response was evaluated by the tail-flick test. The results revealed that intra-NAc administration of D1/D2-like dopamine receptor antagonists, SCH-23390 or sulpiride, respectively, blocked morphine sensitization-induced by RS and morphine co-administration in rats for three consecutive days. This work provides new insight into the determinant role of accumbal dopamine receptors in morphine sensitization produced by RS-morphine co-administration.
-
Neurochemical research · Feb 2021
N-acetylserotonin Derivative Exerts a Neuroprotective Effect by Inhibiting the NLRP3 Inflammasome and Activating the PI3K/Akt/Nrf2 Pathway in the Model of Hypoxic-Ischemic Brain Damage.
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the main causes of neonatal disability and death. As a derivative of N-acetylserotonin, N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC) can easily cross the blood-brain barrier and have a long half-life in the brain. In this study, the hypothesis was verified that HIOC plays a neuroprotective role in the HIE model and its potential mechanism was evaluated. ⋯ Finally, the activation of the phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by HIOC was verified in vitro and in vivo. It was discovered that HIOC could increase the nuclear translocation of Nrf2, and that this induction can be reversed by the PI3K/Akt pathway inhibitor LY294002. In general terms, the neuroprotective effect of HIOC was confirmed in the HIE model, which is related to the activation of the Pi3k/Akt/Nrf2 signal pathway and the inhibition of the NLRP3 inflammasome.
-
Neurochemical research · Sep 2020
LncRNA MALAT1 Promotes OGD-Induced Apoptosis of Brain Microvascular Endothelial Cells by Sponging miR-126 to Repress PI3K/Akt Signaling Pathway.
Ischemic stroke (IS) is a common disease that seriously endangers human health. Patients with IS present with increased death of brain microvascular endothelial cells (BMECs). MALAT1 is found to be upregulated in IS patients. ⋯ Overexpression of miR-126 activated the PI3K/Akt pathway, which in turn affected the proliferation and apoptosis of HBMECs. MALAT1 negatively regulated PI3K/Akt pathway. MALAT1 inhibited the proliferation and induced the apoptosis of OGD-induced HBMECs through suppressing PI3K/AKT pathway by sponging miR-126, providing a potential therapeutic target for IS.
-
Neurochemical research · Jul 2020
Triglyceride is a Good Biomarker of Increased Injury Severity on a High Fat Diet Rat After Traumatic Brain Injury.
Injury severity is correlated with poor prognosis after traumatic brain injury (TBI). It is not known whether triglycerides (TGs) or total cholesterol (TC) is good biomarker of increased injury of neuroinflammation and apoptosis in a high fat diet (HFD)-treated rat after TBI episodes. Five-week-old male Sprague-Dawley (SD) rats were fed a HFD for 8 weeks. ⋯ The FPI with 2.4 atm significantly increased body weight loss, infarction volume, neuronal apoptosis and TNF-α expression in the microglia and astrocytes, and it decreased the maximum grasp degree and TNFR1 and TNFR2 expression in neurons at the 3rd day following TBI. The serum TG level was positively correlated with FPI force, infarction volume, Neu-N-TUNEL, GFAP-TNFα, and OX42-TNFα Simultaneously; the serum TG level was negatively correlated with Neu-N-TNFR1 and Neu-N-TNFR2. TG is a good biomarker of increased injury for neuroinflammation and apoptosis at the 3rd day after TBI in HFD rats.