Neurochemical research
-
Neurochemical research · Nov 2014
Attenuation of neuropathic pain by saikosaponin a in a rat model of chronic constriction injury.
Despite immense advances in the treatment strategies, the effective treatment of patients suffering from neuropathic pain remains challenging. Saikosaponin a possesses anti-inflammatory activity. However, the role of saikosaponin a in neuropathic pain is still unclear. ⋯ In addition, saikosaponin a inhibited CCI-induced the levels of TNF-α, IL-1β, IL-2 in spinal cord. Western blot analysis demonstrated that saikosaponin a reduced the elevated expression of p-p38 mitogen-activated protein kinase (MAPK) and NF-κB in the spinal cord induced by CCI. These results suggest that saikosaponin a could effectively attenuate neuropathic pain in CCI rats by inhibiting the activation of p38 MAPK and NF-κB signaling pathways in spinal cord.
-
Neurochemical research · Oct 2014
ReviewOn the discovery and development of pimavanserin: a novel drug candidate for Parkinson's psychosis.
Parkinson's disease psychosis (PDP) is a condition that may develop in up to 60 % of Parkinson's patients, and is a major reason for nursing home placement for those affected. There are no FDA approved drugs for PDP but low doses of atypical anti-psychotic drugs (APDs) are commonly prescribed off-label. Only low-dose clozapine has shown efficacy in randomized controlled trials, but all APDs have black box warnings related to the increased mortality and morbidity when used in elderly demented patients. ⋯ Pimavanserin demonstrated good safety and tolerability and did not worsen motoric symptoms as assessed by the unified Parkinson's disease rating scale parts II and III. An open-label extension study has further demonstrated that pimavanserin is safe and well-tolerated with long-term use. Pimavanserin may therefore offer a viable treatment option for patients suffering from PDP.
-
Neurochemical research · Sep 2014
ReviewExploring the modulation of hypoxia-inducible factor (HIF)-1α by volatile anesthetics as a possible mechanism underlying volatile anesthetic-induced CNS injury.
This review summarizes recent research on the potential cognitive and behavioural abnormalities induced by exposure to volatile anesthetics and suggests a role of hypoxia-inducible factor (HIF)-1α in mediating these events. Volatile anesthetics are widely utilized in clinical and research settings, yet the long-term safety of exposure to these agents is under debate. Findings from various animal models suggest volatile anesthetics induce widespread apoptosis in the central nervous system (CNS) that correlates with lasting deficits in learning and memory. ⋯ However, the mechanisms underlying these events have yet to be established. Considering the extensive use of volatile anesthetics, it is crucial that these events are better understood. The possible role of HIF-1α in volatile anesthetic-induced CNS abnormalities will be suggested and areas requiring urgent attention will be outlined.
-
Neurochemical research · Jul 2014
Citicoline protects brain against closed head injury in rats through suppressing oxidative stress and calpain over-activation.
Citicoline, a natural compound that functions as an intermediate in the biosynthesis of cell membrane phospholipids, is essential for membrane integrity and repair. It has been reported to protect brain against trauma. This study was designed to investigate the protective effects of citicoline on closed head injury (CHI) in rats. ⋯ Moreover, citicoline suppressed the activities of calpain, and enhanced the levels of calpastatin, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. Also, it attenuated the axonal and myelin sheath damage in corpus callosum and the neuronal cell death in hippocampal CA1 and CA3 subfields 7 days after CHI. These data demonstrate the protection of citicoline against white matter and grey matter damage due to CHI through suppressing oxidative stress and calpain over-activation, providing additional support to the application of citicoline for the treatment of traumatic brain injury.
-
Neurochemical research · Jul 2014
Comparative Study Observational StudySerum S100β is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study.
S100β and neuron-specific enolase (NSE) are brain injury biomarkers, mainly used in brain trauma, cerebral stroke and hypoxic ischemia encephalopathy. The aim of this study was to study the clinical significance of serum S100β and NSE in diagnosing sepsis-associated encephalopathy (SAE) and predicting its prognosis. This was a prospective and observational study. ⋯ These may be related to the severity of SAE and may predict the outcome of sepsis. The efficacy and sensitivity of serum S100β in diagnosing SAE were high, but it had a low specificity. Moreover, compared to NSE, serum S100β was better for both diagnosing SAE and predicting the outcome of sepsis.