Neurochemical research
-
Neurochemical research · Sep 2012
Assessment of oxidative parameters in rat spinal cord after chronic constriction of the sciatic nerve.
Although reactive oxygen species (ROS) are involved in neuropathic pain, the direct relationship between these species and chronic constriction of sciatic nerve (CCI) has not been studied in spinal cord. Thus, this study induced CCI in rats and these animals were sacrificed 3 and 10 days after the surgical procedure to determine the superoxide dismutase (SOD) and catalase activities, as well as ascorbic acid, hydrogen peroxide (H(2)O(2)) and lipid hydroperoxide levels in lumbosacral spinal cord. Von Frey Hair and hot plate tests were performed to assess the degree of mechanical and thermal hyperalgesia at days 0, 3 and 10. ⋯ SOD activity was decreased in Sham and CCI groups at day 3, while catalase activity was increased in CCI rats at days 3 and 10. Ascorbic acid levels were reduced only in CCI rats at day 3. Although the role of such changes is unclear, many were not specific to neuropathic pain and the differences could be related to different degrees of central sensitization in Sham and CCI rats.
-
Neurochemical research · Aug 2012
Interleukin-10 of red nucleus plays anti-allodynia effect in neuropathic pain rats with spared nerve injury.
Our previous studies have shown that pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in red nucleus (RN) are involved in the development of neuropathic pain and play facilitated roles on the mechanical allodynia induced by peripheral nerve injury. The current study was designed to evaluate the expression and effect of IL-10, an anti-inflammatory cytokine, in the RN of rats with spared nerve injury (SNI). ⋯ Results demonstrated that higher doses of IL-10 (1.0 and 0.5 μg/μl) significantly attenuated the mechanical allodynia of neuropathic rats, while 0.1 μg/μl of IL-10 did not show any analgesic effect. These results suggest that IL-10 of RN participates in the development of neuropathic pain and plays inhibitory roles on the mechanical allodynia induced by SNI.
-
Neurochemical research · May 2012
Protective effects of mGluR5 positive modulators against traumatic neuronal injury through PKC-dependent activation of MEK/ERK pathway.
Several previous studies utilizing selective pharmacological antagonists have demonstrated that type 5 metabotropic glutamate receptors (mGluR5) are potential therapeutic targets for the treatment of numerous disorders of the central nervous system, but the role of mGluR5 activation in traumatic brain injury (TBI) is not fully understood. Here in an in vitro TBI model, the mGluR5 agonist (RS)-2-chloro-5- hydroxyphenylglycine (CHPG) and the positive allosteric modulators 3-cyano-N-(1,3- diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) were used to investigate the neuroprotective potency of mGluR5 activation. Data showed that CHPG and CDPPB suppressed the increase of LDH release and caspase-3 activation induced by traumatic neuronal injury in a dose-dependent manner, and the salutary effects were also present when these compounds were added 1 h after injury. ⋯ With the pretreatment of chelerythrine chloride, a PKC inhibitor, the surpressing effects of CHPG and CDPPB on traumatic injury-evoked LDH release and caspase-3 activation were blocked. All of these findings extended the protective role of mGluR5 activation in an in vitro model of TBI and suggested that these protective effects might be mediated by the PKC-dependent activation of MEK/ERK pathway. These results may have important implications for the development of mGluR5 modulators to treat TBI.
-
Neurochemical research · Apr 2012
Comparative StudyTenuigenin promotes proliferation and differentiation of hippocampal neural stem cells.
The present study was to investigate the influence of tenuigenin, an active ingredient of Polygala tenuifolia Willd, on the proliferation and differentiation of hippocampal neural stem cells in vitro. Tenuigenin was added to a neurosphere culture and neurosphere growth was measured using MTT assay. The influence of tenuigenin on the proliferation of neural progenitors was examined by Clone forming assay and BrdU detection. ⋯ More neurons were also obtained when tenuigenin was added in the differentiation medium. These findings suggest that tenuigenin is involved in regulating the proliferation and differentiation of hippocampal neural stem cells. This result may be one of the underlying reasons for tenuigenin's nootropic and anti-aging effects.
-
Neurochemical research · Apr 2012
ReviewTricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature.
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). ⋯ D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.