Neurochemical research
-
Neurochemical research · Jul 2020
High Estrogen Level Modifies Postoperative Hyperalgesia via GPR30 and MMP-9 in Dorsal Root Ganglia Neurons.
The cycling of sex hormones is one of the factors affecting pain in females, and the mechanisms are not fully understood. G-protein coupled estrogen receptor 30 (GPR30) is the estrogen receptor known to be involved in mechanical hyperalgesia. Studies have demonstrated that matrix metalloproteinase-9 (MMP-9) is a critical component in peripheral/central nervous system hypersensitivity and neuroinflammation, both of which participate in hyperalgesia. ⋯ In high estrogen level rats with plantar incisions, intrathecal injection of GPR30 antagonist G15 significantly attenuated postoperative hyperalgesia. Intraperitoneal injection of N-acetyl-cysteine, a source of cysteine that prevents the oxidation of cysteine residues on MMP-9, significantly relieved high estrogen-induced postoperative hyperalgesia via suppression of MMP-9 and IL-1β activation in DRGs. These results demonstrate that high estrogen level in rats with incisions elicit GPR30 and MMP-9 upregulation in DRGs and subsequently activate IL-1β, leading to induced postoperative hyperalgesia.
-
Neurochemical research · May 2020
Attenuation of Acute Intracerebral Hemorrhage-Induced Microglial Activation and Neuronal Death Mediated by the Blockade of Metabotropic Glutamate Receptor 5 In Vivo.
The activation of microglia in response to intracerebral hemorrhagic stroke is one of the principal components of the progression of this disease. It results in the formation of pro-inflammatory cytokines that lead to neuronal death, a structural deterioration that, in turn interferes with functional recovery. Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in reactive microglia and is involved in the pathological processes of brain disorders, but its role in intracerebral hemorrhage (ICH) remains unknown. ⋯ Taken together, our results demonstrate that ICH injury enhances mGluR5 expression in the acute and subacute stages and that mGluR5 is highly localized in reactive microglia. The blockade of mGluR5 reduces ICH-induced acute microglial activation, provides neuroprotection and promotes neurofunctional recovery after ICH. The inhibition of mGluR5 may be a relevant therapeutic target for intracerebral hemorrhagic stroke.
-
Neurochemical research · Nov 2019
Protective Effects of ACY-1215 Against Chemotherapy-Related Cognitive Impairment and Brain Damage in Mice.
Chemotherapy-related cognitive impairment (CRCI) is a potential long-term side effect during cancer treatment. There are currently no effective treatments for CRCI. Reduction or inhibition of histone deacetylase 6 (HDAC6) has been considered a possible therapeutic strategy for cognitive deficits. ⋯ Furthermore, ACY-1215 recovered cisplatin-induced impaired mitochondrial transport and mitochondrial dysfunction in the hippocampus. Our results suggest that inhibition of HDAC6 improves established cisplatin-induced cognitive deficits by the restoration of mitochondrial and synaptic impairments. These results offer prospective approaches for CRCI, especially because ACY1215 currently serves as an add-on cancer therapy during clinical trials.
-
Neurochemical research · Sep 2019
N-methyl-D-aspartate Receptors in the Prelimbic Cortex are Critical for the Maintenance of Neuropathic Pain.
The mechanisms underlying chronic and neuropathic pain pathology involve peripheral and central sensitisation. The medial prefrontal cortex (mPFC) seems to participate in pain chronification, and glutamatergic neurotransmission may be involved in this process. Thus, the aim of the present work was to investigate the participation of the prelimbic (PrL) area of the mPFC in neuropathic pain as well as the role of N-methyl D-aspartate (NMDA) glutamate receptors in neuropathic pain induced by a modified sciatic nerve chronic constriction injury (CCI) protocol in Wistar rats. ⋯ Mechanism of neuropathic pain. The infusion of CoCl2, a synapse activity blocker, into the prelimbic (PrL) division of the medial prefrontal cortex (mPFC) decreased the severity of mechanical allodynia, showing the late participation of the limbic cortex. The glutamatergic system potentiates chronic neuropathic pain via NMDA receptor activation in the PrL cortex.
-
Neurochemical research · Aug 2019
Glial Plasticity in the Trigeminal Root Entry Zone of a Rat Trigeminal Neuralgia Animal Model.
The trigeminal root entry zone (TREZ) is the transitional zone of central and peripheral tissue compartments in the trigeminal root. Microvascular compression on the TREZ is the main etiology of most idiopathic trigeminal neuralgia (TN) patients. However, the pathogenesis of TN is still uncertain. ⋯ A significantly higher number of Schwann cells, astrocytes and microglia/macrophages were found in the TN group than in the sham operation group (p < 0.05). In conclusion, mechanical compression injury in the TN rats activated various glial cells, including oligodendrocytes, astrocytes, Schwann cells and microglia/macrophages, in the CNS-PNS transitional zone of TREZ. Changes in glial cell plasticity in the TREZ after compression injury might be involved in TN pathogenesis.