Neurochemical research
-
Neurochemical research · Jul 2019
ReviewPossible Molecular Mediators Involved and Mechanistic Insight into Fibromyalgia and Associated Co-morbidities.
Fibromyalgia is a chronic complex syndrome of non-articulate origin characterized by musculoskeletal pain, painful tender points, sleep problems and co-morbidities including depression, migraine. The etiopathogenesis of fibromyalgia is complex, variable and remains inconclusive. The etiological factors that have been defined include stress, genetic predisposition and environmental components. ⋯ Owing to complex interplay of diverse pathophysiological pathways, overlapping co-morbidities such as depression have been clinically observed. Therapeutic management of fibromyalgia involves both non pharmacological and pharmacological measures. The current review presents various dysregulations and their association with symptoms of fibromyalgia along with their underlying neurobiological aspects.
-
Neurochemical research · Jul 2019
Echinacoside Alleviates Hypoxic-Ischemic Brain Injury in Neonatal Rat by Enhancing Antioxidant Capacity and Inhibiting Apoptosis.
Hypoxic-ischemic brain damage (HIBD) is a leading cause of death and disability in neonatal or perinatal all over the world, seriously affecting children, families and society. Unfortunately, only few satisfactory therapeutic strategies have been developed. It has been demonstrated that Echinacoside (ECH), the major active component of Cistanches Herba, exerts many beneficial effects, including antioxidative, anti-apoptosis, and neuroprotective in the traditional medical practice in China. ⋯ ECH post-administration helped recovering the antioxidant enzyme activities and decreasing the MDA production. Furthermore, ECH treatment suppressed neuronal apoptosis in the rats with HIBD was by reduced TUNEL-positive neurons, the caspase-3 levels and increased the Bcl-2/Bax ratio. These results suggested that ECH treatment was beneficial to reducing neuronal damage by attenuating oxidative stress and apoptosis in the brain under HIBD.
-
Neurochemical research · Apr 2019
MiR-124 Enriched Exosomes Promoted the M2 Polarization of Microglia and Enhanced Hippocampus Neurogenesis After Traumatic Brain Injury by Inhibiting TLR4 Pathway.
MicroRNA-124 (miR-124) is a brain specific miRNA that is highly expressed in microglia. The upregulation of miR-124 contributes to M2 polarization of microglia, which is beneficial to neurogenesis. Exosomes are lipid membrane vesicles that can deliver miR-124 into the brain. ⋯ Results demonstrated that Exo-miR-124 treatment promoted the M2 polarization of microglia, enhanced neurogenesis in hippocampus, and improved function recovery after TBI. The M2 polarization effect of Exo-miR-124 was produced through inhibiting TLR4 pathway, which was verified in hippocampus and BV2 microglia. In conclusion, Exo-miR-124 treatment promoted M2 polarization of microglia and improved hippocampal neurogenesis and functional recovery after brain injury, which might be a strategy to improve the outcome of TBI.
-
Neurochemical research · Mar 2019
ReviewLeptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease.
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. ⋯ Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
-
Neurochemical research · Dec 2018
Resolvin D2 Relieving Radicular Pain is Associated with Regulation of Inflammatory Mediators, Akt/GSK-3β Signal Pathway and GPR18.
Neuroinflammation induced by protruded nucleus pulposus (NP) has been shown to play a significant role in facilitation of radicular pain. Resolvin D2 (RvD2), a novel member of resolvin family, exhibits potent anti-inflammatory, pro-resolving and antinociceptive effects. But the effect of RvD2 in radicular pain remains unknown. ⋯ Furthermore, immunofluorescence showed that GPR18 colocalized with neurons and astrocytes in spinal cord. The results suggested that RvD2 might attenuate mechanical allodynia via regulating the expressions of inflammatory mediators and activation of Akt/GSK-3β signal pathway. RvD2 might offer a hopeful method for radicular pain therapy.