Skeletal radiology
-
The ongoing coronavirus disease 2019 (COVID-19) pandemic has increased the need for safe and efficient testing as a key containment strategy. Drive-through testing with nasopharyngeal swab has been implemented in many places in the USA as it allows for expeditious testing of large numbers of patients, limits healthcare workers' risk of exposure, and minimizes the use of personal protective equipment. We present a case where the aluminum shaft of the nasopharyngeal swab fractured during specimen collection at a drive-through testing facility and was suspected to have remained in the asymptomatic patient. ⋯ A technique using lower tube voltage (kVp) with tight collimation centered at the nasal bones area produced the best visualization of the aluminum shaft of the swab. Recognition that aluminum foreign bodies may be difficult to visualize radiographically and optimization of radiograph acquisition technique may help guide clinical management in unusual cases. Further evaluation with computed tomography or endoscopy should be considered in suspected cases where radiographs are negative.
-
To determine if dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters reflect histological grade of soft tissue sarcoma (STS) MATERIALS AND METHODS: The medical records of 50 patients diagnosed with pathologically confirmed STS were retrospectively reviewed. Each STS was assessed with conventional contrast-enhanced MRI and DCE-MRI using a 3.0-T MRI system. The conventional MRI characteristics of low-grade (grade 1) and high-grade (grade 2 and grade 3) tumors were analyzed. Semi-quantitative parameters, including iAUC and TTP, and quantitative parameters, including Ktrans, Kep, and Ve, were derived from DCE-MRI. The diagnostic performances and optimal thresholds of various combinations of DCE-MRI parameters for predicting histological grades of STS were investigated using receiver operator characteristic (ROC) curves. ⋯ High-grade STSs were usually larger than low-grade STSs, had unclear boundaries, a heterogeneous signal intensity on T2-weighted image (T2WI), and extensive necrosis. On DCE-MRI, iAUC, TTP, Ktrans, and Kep could differentiate between high-grade and low-grade STSs. The combination of iAUC, TTP, and Ktrans had a high diagnostic performance for differentiating between STS histological grades.