Immunological reviews
-
The innate immune system is critical in recognizing bacterial and viral infections to evoke a proper immune response. Certain members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family detect microbial components in the cytosol and trigger the assembly of large caspase-1-activating complexes termed inflammasomes. Autoproteolytic maturation of caspase-1 zymogens within these inflammasomes leads to maturation and secretion of the pro-inflammatory cytokines interleukin-1 beta (IL-1 beta) and IL-18. ⋯ Cryopyrin/NALP3 mediates caspase-1 activation in response to a wide variety of microbial components and in response to crystalline substances such as the endogenous danger signal uric acid. Genetic variations in Nalp1 and cryopyrin/Nalp3 are associated with autoinflammatory disorders and increased susceptibility to microbial infection. Further understanding of inflammasomes and their role in innate immunity should provide new insights into the mechanisms of host defense and the pathogenesis of autoimmune diseases.
-
Immunological reviews · Jan 2009
ReviewThe long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity.
The innate immune system consists of a cellular arm and a humoral arm. Components of humoral immunity include diverse molecular families, which represent functional ancestors of antibodies. They play a key role as effectors and modulators of innate resistance in animals and humans, interacting with cellular innate immunity. ⋯ Phagocytes represent a key source of this fluid-phase pattern recognition receptor, which, in turn, facilitates microbial recognition by phagocytes acting as an opsonin. Moreover, PTX3 has modulatory functions on innate immunity and inflammation. Here, we review the studies on PTX3 which emphasize the complexity and complementarity of the crosstalk between the cellular and humoral arms of innate immunity.