Investigative ophthalmology & visual science
-
Invest. Ophthalmol. Vis. Sci. · Aug 2018
Ambient Air Currents Activate Corneal Nerves During Ocular Desiccation in Rats: Simultaneous Recordings of Neural Activity and Corneal Temperature.
Previously we found two types of corneal neurons that we hypothesized to play an important role in tearing. One type is called low threshold-cold sensitive plus dry sensitive (LT-CS + DS), and the other is termed high threshold-cold sensitive plus dry sensitive (HT-CS + DS). The present study examined critical stimuli influencing the activity of these neurons to elucidate environmental factors that may trigger this ocular reflex. ⋯ These results suggest that LT-CS + DS neurons play a role in the afferent trigger of tearing as we face the environment, exposing the cornea to prevailing air currents that produce a slight cooling of the ocular surface. By contrast, HT-CS + DS neurons may serve to protect the eyes from extreme dryness by eliciting nociception-evoked tearing when the OST or osmolarity of tears becomes injurious.
-
Invest. Ophthalmol. Vis. Sci. · Aug 2018
Murine Retinal Citrullination Declines With Age and is Mainly Dependent on Peptidyl Arginine Deiminase 4 (PAD4).
Citrullination is a post-translational modification (PTM) that serves many normal physiological functions. Studies have shown that this PTM-along with expression of the catalyzing enzymes, peptidyl arginine deiminases (PADs)-are increased in autoimmune and age-related pathologies. PAD2 retinal expression has been previously documented in rat and human. Herein, we report on the expression levels and patterns of PAD2, PAD4, and retinal citrullination in the murine retina with age. ⋯ Both PAD2 and PAD4 expression and citrullination decrease with age in the murine retina. However, in the absence of PAD4, retinal citrullination is nearly abolished, indicating that PAD4 is a main effector for retinal citrullination under physiological conditions.