Journal of molecular and cellular cardiology
-
J. Mol. Cell. Cardiol. · Mar 1998
Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.
The objective of the present study was to establish the optimal combination of inhibitors of adenosine metabolism and nucleotide precursors resulting in long-term increase in endogenous adenosine concentration without adverse metabolic consequences in non-ischemic cardiomyocytes and endothelial cells. Cardiomyocytes and endothelial cells were isolated after collagenase digestion of the rat heart. Freshly isolated cardiac myocytes or cultured endothelial cells were incubated for up to 8 h with no inhibitors or substrates or with various combinations of adenosine deaminase inhibitor: 5 micron M erythro-9(2-hydroxy-3-nonyl)adenine (EHNA), adenosine kinase inhibitors: 10 micro M 5'-iodotubercidin (ITu) or 10 micro M 5'-aminoadenosine (AA) and nucleotide precursors: 100 micro M adenine, 2.5 mm ribose and 5 mm inorganic phosphate. ⋯ No changes in adenylate energy charge were observed in cardiomyocytes or endothelium under any conditions studied. Inhibition of adenosine kinase and adenosine deaminase caused a decrease in ATP together with increased adenosine content both in endothelial cells and cardiomyocytes. However, the addition of adenine (endothelial cells) or adenine with ribose (cardiomyocytes) together with inhibitors of adenosine metabolism protected cells from ATP depletion and further increased adenosine concentration.