Journal of molecular and cellular cardiology
-
J. Mol. Cell. Cardiol. · May 1999
PKC-dependent preconditioning with norepinephrine protects sarcoplasmic reticulum function in rat trabeculae following metabolic inhibition.
The authors have previously shown that norepinephrine (NE) pretreatment attenuates Ca2+ overloading in cardiac rat trabeculae during metabolic inhibition, and improves contractile function during a subsequent recovery period. The present study investigated: (i) whether protection of sarcoplasmic reticulum (SR) function during metabolic inhibition (MI) is involved in the preconditioning-like effect of NE-pretreatment, and (ii) whether or not this process is PKC-dependent. A 15 min preincubation period was used with 1 micromol/l exogenous NE to precondition isolated, superfused rat trabeculae against contractile dysfunctioning following 40 min of MI in 2 mmol/l NaCN containing Tyrode (gassed with 95% O2/5% CO2; pH 7.4, 24 degrees C) without glucose at 1-Hz stimulation frequency. ⋯ The change of -dF/dt/rws in the NE group during RP following MI persisted after SR Ca2+-release channel blockade by ryanodine treatment (100 micromol/l), which suggests involvement of NE-induced, PKC-dependent protection of SR Ca2+-ATPase activity. The results of the present study point to an inverse relationship between the Ca2+ rise during MI and SR functioning, in which PKC appears to play a key role. It is concluded that the preconditioning-like effect of NE-pretreatment on contractile recovery is at least partly mediated by protection of SR function.