Journal of molecular and cellular cardiology
-
J. Mol. Cell. Cardiol. · Dec 2009
Nitric oxide inhibits endothelin-1-induced neonatal cardiomyocyte hypertrophy via a RhoA-ROCK-dependent pathway.
Although nitric oxide (NO) has received extensive attention as an anti-hypertrophic agent the mechanisms underlying its regulation of endothelin-1 (ET-1) have not been fully elucidated. Since RhoA has been identified as an important mediator of cardiac hypertrophy and is inhibited by NO in vascular tissue, we sought to determine whether the anti-ET-1 effects of NO in cardiomyocytes were mediated via inhibition of the RhoA-ROCK cascade in the context of cardiac hypertrophy. Neonatal rat ventricular myocytes were cultured in the presence of ET-1 (10 nM) with or without pre-treatment with the NO donor S-nitroso-n-acetylpenicillamine (SNAP; 100 microM), 8-Br-cGMP (cGMP; 100 microM), the RhoA inhibitor C3 exoenzyme (C3; 30 ng/ml), or the ROCK inhibitor Y-27632 (10 microM). ⋯ In addition, confocal microscopy and Western blotting revealed that 24 h ET-1 treatment reduced the G- to F-actin ratio 67% (p<0.05) which was prevented by SNAP, cGMP, C3 and Y (p<0.05). Taken together, these results suggest that the anti-hypertrophic effects of NO are due, in part, to cGMP-dependent inhibition of the RhoA-ROCK-cofilin signalling pathway. These findings may be important in understanding the mechanisms of anti-ET-1 and anti-hypertrophic effects of NO as well as in the development of novel RhoA-targeted therapeutic interventions for treating cardiac hypertrophy.
-
J. Mol. Cell. Cardiol. · Dec 2009
Preservation of mitochondrial function with cardiopulmonary resuscitation in prolonged cardiac arrest in rats.
During cardiac arrest (CA), myocardial perfusion is solely dependent on cardiopulmonary resuscitation (CPR) although closed-chest compressions only provide about 10-20% of normal myocardial perfusion. The study was conducted in a whole animal CPR model to determine whether CPR-generated oxygen delivery preserves or worsens mitochondrial function. Male Sprague-Dawley rats (400-450 g) were randomly divided into four groups: (1) BL (instrumentation only, no cardiac arrest), (2) CA(15) (15 min cardiac arrest without CPR), (3) CA(25) (25 min cardiac arrest without CPR) and (4) CPR (15 min cardiac arrest, followed by 10 min CPR). ⋯ Observations of mitochondrial ultrastructure by TEM were compatible with the biochemical results. The findings suggest that, despite low blood flow and oxygen delivery, CPR is able to preserve heart mitochondrial function and viability during ongoing global ischemia. Preservation of complex I activity and mitochondrial function during cardiac arrest may be an important mechanism underlying the beneficial effects of CPR which have been shown in clinical studies.