Journal of molecular and cellular cardiology
-
J. Mol. Cell. Cardiol. · Jul 2012
Role of PI3Kα and sarcolemmal ATP-sensitive potassium channels in epoxyeicosatrienoic acid mediated cardioprotection.
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 epoxygenase metabolites of arachidonic acid that have known cardioprotective properties. While the mechanism(s) remains unknown, evidence suggests that phosphoinositide 3-kinase (PI3K) and sarcolemmal ATP-sensitive potassium channels (pmK(ATP)) are important. However the role of specific PI3K isoforms and corresponding intracellular mechanisms remains unknown. ⋯ Together our data suggest that EET-mediated cardioprotection involves activation of PI3Kα, upstream of pmK(ATP), which prevents Ca(2+) overload and maintains mitochondrial function.
-
J. Mol. Cell. Cardiol. · Jun 2012
Neuronal nitric oxide synthase is up-regulated by angiotensin II and attenuates NADPH oxidase activity and facilitates relaxation in murine left ventricular myocytes.
Angiotensin II (Ang II) is critical in myocardial pathogenesis, mostly via stimulating NADPH oxidase. Neuronal nitric oxide synthase (nNOS) has recently been shown to play important roles in modulating myocardial oxidative stress and contractility. Here, we examine whether nNOS is regulated by Ang II and affects NADPH oxidase production of intracellular reactive oxygen species (ROS(i)) and contractile function in left ventricular (LV) myocytes. ⋯ The positive lusitropic effect of Ang II was not mediated by PKA-, CaMKII-dependent signaling or peroxynitrite. Conversely, inhibition of cGMP/PKG pathway abolished the Ang II-induced faster relaxation by reducing phospholamban (PLN) Ser(16) phosphorylation. Taken together, these results clearly demonstrate that myocardial nNOS is up-regulated by Ang II and functions as an early adaptive mechanism to attenuate NADPH oxidase activity and facilitate myocardial relaxation.
-
J. Mol. Cell. Cardiol. · Jun 2012
Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B.
Protein tyrosine phosphatase 1B (PTP1B) regulates tyrosine kinase receptor-mediated responses, and especially negatively influences insulin sensitivity, thus PTP1B inhibitors (PTP1Bi) are currently evaluated in the context of diabetes. We recently revealed another important target for PTP1Bi, consisting in endothelial protection. The present study was designed to test whether reduction of PTP1B activity may be beneficial in chronic heart failure (CHF). ⋯ Thus, chronic pharmacological inhibition or gene deletion of PTP1B improves cardiac dysfunction and cardiac remodeling in the absence of changes in infarct size. Thus this enzyme may be a new therapeutic target in CHF. Diabetic patients with cardiac complications may potentially benefit from PTP1B inhibition via two different mechanisms, reduced diabetic complications, and reduced heart failure.
-
J. Mol. Cell. Cardiol. · May 2012
MyD88 mediated inflammatory signaling leads to CaMKII oxidation, cardiac hypertrophy and death after myocardial infarction.
The toll-like receptors (TLR) and myocardial infarction (MI) promote NF-κB-dependent inflammatory transcription and oxidative injury in myocardium. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated by oxidation and contributes to NF-κB-dependent transcription, myocardial hypertrophy and post-MI death. The myeloid differentiation protein 88 (MyD88) is an adapter protein critical for many TLR functions, but downstream targets for TLR/MyD88 signaling in MI are not well understood. ⋯ Several hypertrophy marker genes were upregulated in both WT and MyD88(-/-) hearts after MI, but Acta1 was significantly attenuated in MyD88(-/-) hearts, suggesting that MyD88 selectively affects expression of hypertrophic genes. Post-MI cardiac hypertrophy, inflammation, apoptosis, ox-CaMKII expression and mortality were significantly reduced in MyD88(-/-) compared to WT littermates. These data suggest that MyD88 contributes to CaMKII oxidation and is important for adverse hypertrophic and inflammatory responses to LPS and MI.
-
AMP-activated protein kinase (AMPK) is a master metabolic switch that plays an important role in energy homeostasis at the cellular and whole body level, hence a promising drug target. AMPK is a heterotrimeric complex composed of catalytic α-subunit and regulatory β- and γ-subunits with multiple isoforms for each subunit. It has been shown that AMPK activity is increased in cardiac hypertrophy and failure but it is unknown whether changes in subunit composition of AMPK contribute to the altered AMPK activity. ⋯ Thus, the human hearts have a greater amount of α1-AMPK activity compared to the rodent hearts. In summary, the protein level and the isoform distribution of AMPK in the heart change significantly during normal development as well as in heart failure. These observations provide a basis for future development of therapeutic strategies for targeting AMPK.