Journal of analytical toxicology
-
Although not used clinically in North America, etizolam has been identified in forensic samples as an illicit, "designer" benzodiazepine. Having central nervous system (CNS) depressant effects, analysis for etizolam has probative value in both death investigations and in forensic cases where incapacitation or human psychomotor performance are relevant. This report examines toxicological findings and demographic data in a series of authentic forensic cases analyzed between November 2019 and December 2020 in which etizolam was quantified by LC-MS/MS analysis. ⋯ In all but one case, other drugs were detected in combination with etizolam. Fentanyl was the most common co-occurring drug and was present in 164 cases (86%). Additional case details are provided for cases of forensic interest: two deaths involving children under three years of age, two deaths involving body-packing, and an individual arrested for drug-impaired driving with, to our knowledge, the highest reported etizolam concentration to date.
-
Etizolam is a novel psychoactive substance and novel benzodiazepine of the thienotriazolodiazepine class, which has recently seen an increasing trend in use worldwide. We report a case series of 10 decedents with etizolam and opioids in their systems. Death investigation, expanded toxicology and medical investigation information were included for contextualization of etizolam in death. ⋯ The majority of the decedents appeared to be unaware of the presence of etizolam and succumbed to the mixed drug toxicity of their routine depressant and narcotic analgesic drug of abuse in combination with etizolam. Etizolam use continues to be observed and poses as a potentially lethal contribution to multiple drug toxicity, especially in the age of the opioid crisis. Assessment of analytes like etizolam requires up-to-date methodologies and vigilance in testing to better characterize the toxicology and interpret the contribution to death.
-
This study describes 12 cases of drivers stopped for impaired driving, where a designer benzodiazepine was detected, specifically etizolam or flubromazolam. Etizolam was detected in three cases, with blood concentrations ranging from 40 to 330 ng/mL. Two of these cases had low concentrations of methamphetamine and/or amphetamine, and in the third case tetrahydrocannabinol (THC) was detected. ⋯ The low concentrations of designer benzodiazepines that produce pharmacological effects may allow many of these drugs to go undetected using routine testing in laboratories; therefore, it is necessary to include these novel compounds within validated analytical methods to reduce the chance of reporting false negative results. The prevalence in which laboratories are detecting the presence of novel benzodiazepines in impaired drivers illustrates the increased threat to public safety. These case studies demonstrate the importance of investigating agencies and forensic laboratories to be vigilant in monitoring the emerging novel psychoactive substances in their region.
-
The use of designer benzodiazepines appears to be increasing in many countries, but data concerning blood concentrations are scarce, making interpretation of concentrations difficult. The aim of this study was to report blood concentrations of clonazolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam and phenazepam and to investigate the relationship between blood concentrations and impairment. The concentration data are from blood samples collected from living cases (apprehended drivers and other drug offences) and medico-legal autopsies. ⋯ The most frequent other drugs detected were amphetamine, tetrahydrocannabinol, clonazepam and methamphetamine. The presented blood concentrations can be helpful with the interpretation of cases involving one or more of these seven benzodiazepines. The results indicate that concentrations commonly observed in forensic cases are associated with impairment.
-
The synthetic opioid landscape continues to change as non-fentanyl-related substances appear in forensic toxicology casework. Among the newest synthetic opioids to emerge is isotonitazene, an analogue of a benzimidazole class of analgesic compounds. Isotonitazene is an active and potent synthetic opioid, but the extent to which this compound is causing toxicity among drug users was previously unknown. ⋯ The prevalence and popularity of isotonitazene continue to increase in the United States in early 2020. Toxicologists, medical examiners and coroners should be aware of novel opioids outside the standard scope of testing, especially in medicolegal death investigations. Forensic scientists should add isotonitazene to testing procedures, and public health officials should counsel about potent new drugs and the dangers of opioid use.