Veterinary microbiology
-
Veterinary microbiology · May 2020
ReviewNovel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses.
The recent pandemic caused by the novel human coronavirus, referrred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), not only is having a great impact on the health care systems and economies in all continents but it is also causing radical changes of common habits and life styles. The novel coronavirus (CoV) recognises, with high probability, a zoonotic origin but the role of animals in the SARS-CoV-2 epidemiology is still largely unknown. ⋯ In the present paper, we provide an up-to-date review of the literature currently available on animal CoVs, focusing on the molecular mechanisms that are responsible for the emergence of novel CoV strains with different antigenic, biologic and/or pathogenetic features. A full comprehension of the mechanisms driving the evolution of animal CoVs will help better understand the emergence, spreading, and evolution of SARS-CoV-2.
-
Veterinary microbiology · Nov 2017
Meta AnalysisRefinement of the equine influenza model in the natural host: A meta-analysis to determine the benefits of individual nebulisation for experimental infection and vaccine evaluation in the face of decreased strain pathogenicity.
Equine Influenza (EI) is an important respiratory disease of horses caused by H3N8 equine influenza viruses (EIV). Vaccination is a key strategy to prevent or control this disease. However, EIV undergoes continuous antigenic drift and whilst numerous EI vaccines are commercially available worldwide, an accurate evaluation of their efficacy is frequently required through clinical trials conducted in the natural host. ⋯ Experimental infection by individual nebulisation improved the clinical and virological parameters induced by recent FC2 strains, when compared with conventional room nebulisation. In conclusion, individual nebulisation offers a better control of the challenge dose administered and a greater homogeneity of the response measured in control animals. This in turn, helps maintain the number of animals per group to the minimum necessary required to obtain meaningful results in vaccine efficacy studies, which adheres to the 3Rs (Replacement, Reduction and Refinement) principles.
-
Veterinary microbiology · Mar 2017
Orally administered live attenuated Salmonella Typhimurium protects mice against lethal infection with H1N1 influenza virus.
Pre-stimulation of toll-like receptors (TLRs) by agonists has been shown to increase protection against influenza virus infection. In this study, we evaluated the protective response generated against influenza A/Puerto Rico/8/1934 (PR8; H1N1) virus by oral and nasal administration of live attenuated Salmonella enterica serovar Typhimurium, JOL911 strain, in mice. Oral and nasal inoculation of JOL911 significantly increased the mRNA copy number of TLR-2, TLR4 and TLR5, and downstream type I interferon (IFN) molecules, IFN-α and IFN-β, both in peripheral blood mononuclear cells (PBMCs) and in lung tissue. ⋯ The lethal and sub-lethal challenge showed that the generated stimulated innate resistance (StIR) in JOL911 inoculated mice conferred resistance to acute and initial influenza infection but might not be sufficient to prevent the PR8 virus invasion and replication in the lung. Overall, the present study indicates that oral administration of attenuated S. Typhimurium can pre-stimulate multiple TLR pathways in mice to provide immediate early StIR against a lethal H1N1 virus challenge.
-
Veterinary microbiology · Dec 2015
Live poultry market workers are susceptible to both avian and swine influenza viruses, Guangdong Province, China.
Guangdong Province is recognized for dense populations of humans, pigs, poultry and pets. In order to evaluate the threat of viral infection faced by those working with animals, a cross-sectional, sero-epidemiological study was conducted in Guangdong between December 2013 and January 2014. Individuals working with swine, at poultry farms, or live poultry markets (LPM), and veterinarians, and controls not exposed to animals were enrolled in this study and 11 (4 human, 3 swine, 3 avian, and 1 canine) influenza A viruses were used in hemagglutination inhibition (HI) assays (7 strains) and the cross-reactivity test (9 strains) in which 5 strains were used in both tests. ⋯ LPM workers were at a higher risk of infection with 3 subtypes of avian influenza, H5N1, H7N9, and H9N2. Interestingly, the OR also indicated that LPM workers were at risk of H1N1 swine influenza virus infection, perhaps due to the presence of pigs in the LPM. While partial confounding by cross-reactive antibodies against human viruses or vaccines cannot be ruled out, our data suggests that animal exposed people as are more likely to have antibodies against animal influenza viruses.
-
Veterinary microbiology · Nov 2015
The PD-L1/CD86 ratio is increased in dendritic cells co-infected with porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus, and the PD-L1/PD-1 axis is associated with anergy, apoptosis, and the induction of regulatory T-cells in porcine lymphocytes.
Porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) continue to have a negative economic impact on global swine production operations. Host immune modulations that potentiate disease during PCV2 and/or PRRSV infections are important areas of ongoing research. In this study, we evaluated the expression levels of PD-L1, CD86, and IL-10 in order to phenotype dendritic cells following viral infection with PCV2b and/or PRRSV. ⋯ We further investigated the role of the PD-L1/PD-1 axis in lymphocyte anergy, apoptosis, and the induction of regulatory T-cells in porcine mononuclear cell populations. Lymphocyte populations with normal PD-1 expression had higher percentages of anergic, apoptotic lymphocytes and CD4(+)CD25(HIGH)FoxP3(+) regulatory T-cells when compared to a PD-1 deficient lymphocyte population. These results implicate the PD-L1/PD-1 axis in negative regulation of lymphocyte responses in pigs.