Alcoholism, clinical and experimental research
-
Alcohol. Clin. Exp. Res. · Feb 1996
Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex.
The present in vivo study tests the hypothesis that limited (4-day) exposure to ethanol differentially affects the proliferation of cortical precursors in the two cortical germinal zones [the ventricular zone (VZ) and the subventricular zone (SZ)] and their descendants in the mature brain. The offspring of pregnant rats fed a liquid diet containing 6.7% (v/v) ethanol when prosencephalic stem cells [gestation day (G) 6-69], VZ cells (G12-G15), and SZ cells were proliferating (G18- G21) throughout much of gestation (G6-G21). In addition, the offspring of rats pair-fed a liquid control diet or fed chow were examined. ⋯ In contrast, ethanol exposure from G18 to G21 increased the labeling indices for fetal SZ cells and for cells in the adult, but it had no effect on the ratio of labeled VZ cells. Although ethanol had no apparent effect on the proliferation of stem cells, it did alter the proliferation of cells in the VZ and SZ. These effects are time-dependent and underlie the ethanol-induced changes in the number of cells in the adult.
-
Alcohol. Clin. Exp. Res. · Feb 1996
Alcohol modulates alveolar macrophage tumor necrosis factor-alpha, superoxide anion, and nitric oxide secretion in the rat.
We investigated the effect of alcohol (ethanol) on the ability of the alveolar macrophage to produce tumor necrosis factor-alpha (TNF-alpha), superoxide anion (O2-), and nitric oxide (NO)--three critical components of pulmonary host defense. Male rats were treated with alcohol either acutely (priming dose 175 mg/100 g of body weight, followed by a 7-hr continuous intravenous infusion of 30 mg/100 g of body weight/hr) or chronically (12-14 weeks of feeding ethanol in a liquid diet). Three hours before sacrifice, the rats received an intravenous injection of saline or lipopolysaccharide (LPS; Escherichia coli, 026:B6, 100 micrograms/100 g of body weight). ⋯ Both acute and chronic alcohol treatment inhibited AM NO secretion in response to IFN-gamma, LPS, and IFN-gamma + LPS significantly. Systemic LPS had no effect on AM NO production in response to different in vitro stimuli in any of the treatment groups. These data suggest that (1) both acute and chronic alcohol administration to rats inhibit AM TNF-alpha and NO secretion; (2) acute and chronic alcohol treatment have differential effects on AM O2- secretion; and (3) alcohol-induced alteration in AM TNF-alpha, O2-, and NO secretion may in part explain the increased susceptibility of alcohol-consuming individuals to pulmonary infections.