Alcoholism, clinical and experimental research
-
Alcohol. Clin. Exp. Res. · Aug 2011
Extensive deep gray matter volume reductions in children and adolescents with fetal alcohol spectrum disorders.
The link between the numerous cognitive, motor, and behavioral difficulties of individuals with fetal alcohol spectrum disorders (FASD) and underlying specific structural brain injuries can be investigated using high-resolution imaging. Differential sensitivity of the brain's "relay" stations, namely the deep gray matter structures, may play a key factor given their multifaceted role in brain function. The purpose of our study was to analyze differences in deep gray matter volumes of children and adolescents with FASD relative to age/sex-matched controls and to examine whether any volume differences were consistent across the age range of neurodevelopment. ⋯ Significant, but variable, volume reductions throughout the deep gray matter are observed over a wide age range of 6 to 17 years in FASD.
-
Alcohol. Clin. Exp. Res. · Aug 2011
Acute ethanol disrupts photic and serotonergic circadian clock phase-resetting in the mouse.
Alcohol dependence is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol dependence on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: (i) characterize the suprachiasmatic nucleus (SCN) pharmacokinetics of acute systemic ethanol administration, (ii) explore the effects of acute ethanol on photic and nonphotic phase-resetting, and (iii) determine if the SCN is a direct target for photic effects. ⋯ These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and nonphotic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism.