Annals of neurology
-
Annals of neurology · Dec 2001
The WldS protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy.
The WldS mouse is a spontaneous mutant that is characterized by the phenotype of delayed degeneration of transected nerves (slow Wallerian degeneration). Molecular genetic analysis identified a mutation in this animal that codes for a unique protein expressed in brain tissue of WldS mice. We asked whether the WldS phenotype, in addition to delaying axonal degeneration after axotomy, might provide neuroprotection against toxic neuropathy. ⋯ Rat neurons expressing the WldS protein were resistant to vincristine-induced axonal degeneration, confirming the functional significance of the identified gene mutation. These data provide evidence that the WldS protein can be neuroprotective against vincristine neuropathy, and possibly other disorders characterized by axonal degeneration. In addition, delivery of this gene to wild type cells can transfer the WldS phenotype, providing the possibility of "gene therapy" for peripheral neuropathy.
-
Annals of neurology · Dec 2001
Clinical TrialEffect of therapeutic ionizing radiation on the human brain.
We test a hypothesis that fractionated radiation therapy within a therapeutic dose range is associated with a dose-related change in normal brain, detectable by quantitative magnetic resonance imaging. A total of 33 patients were examined by quantitative magnetic resonance imaging to measure brain tissue spin-lattice relaxation time (T1) before treatment, and at various times during and after radiation therapy. A T1 map was generated at each time point, and radiation therapy isodose contours were superimposed on the corresponding segmented T1 map. ⋯ Human white matter T1 is not sensitive to radiation therapy of less than 20 Gy, and gray matter T1 is unchanged over the dose range used to treat human brain tumor. The reduction of gray matter T1 near the tumor could result from compression of cortical parenchyma near the growing tumor mass, or from tumor cell invasion directly into the parenchyma. If brain T1 is a surrogate for radiation effect, reducing the volume of normal white matter receiving more than 20 Gy could be an important treatment planning goal.
-
Annals of neurology · Dec 2001
Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive parkinsonism.
A genetic analysis identified 2 patients, approximately one-tenth of our patients with familial parkinsonism, who had expanded trinucleotide repeats in SCA2 genes. The reduction of 18F-dopa distribution in both the putamen and caudate nuclei confirmed that the nigrostriatal dopaminergic system was involved in parkinsonian patients with SCA2 mutation.