Biometrical journal. Biometrische Zeitschrift
-
In recent months one of the most controversially discussed topics among regulatory agencies, the pharmaceutical industry, journal editors, and academia has been the sharing of patient-level clinical trial data. Several projects have been started such as the European Medicines Agency´s (EMA) "proactive publication of clinical trial data", the BMJ open data campaign, or the AllTrials initiative. The executive director of the EMA, Dr. ⋯ Besides these general aspects, data sharing also entails intricate biostatistical questions such as problems of multiplicity. An important issue in this respect is the interpretation of multiple statistical analyses, both prospective and retrospective. Expertise in biostatistics is needed to assess the interpretation of such multiple analyses, for example, in the context of regulatory decision-making by optimizing procedural guidance and sophisticated analysis methods.
-
In recent times, group sequential and adaptive designs for clinical trials have attracted great attention from industry, academia and regulatory authorities. These designs allow analyses on accumulating data - as opposed to classical, "fixed-sample" statistics. ⋯ First, we provide a concise overview of the essential technical concepts, with special emphasis on their interrelationships. Second, we give a structured review of the current controversial discussion on practical issues, opportunities and challenges of these new designs.
-
In cluster randomized trials, intact social units such as schools, worksites or medical practices - rather than individuals themselves - are randomly allocated to intervention and control conditions, while the outcomes of interest are then observed on individuals within each cluster. Such trials are becoming increasingly common in the fields of health promotion and health services research. Attrition is a common occurrence in randomized trials, and a standard approach for dealing with the resulting missing values is imputation. ⋯ We show that cluster mean imputation yields valid inferences and given its simplicity, may be an attractive option in some large community intervention trials which are subject to individual-level attrition only; however, it may yield less powerful inferences than alternative procedures which pool across clusters especially when the cluster sizes are small and cluster follow-up rates are highly variable. When pooling across clusters, the imputation procedure should generally take intracluster correlation into account to obtain valid inferences; however, as long as the intracluster correlation coefficient is small, we show that standard multiple imputation procedures may yield acceptable type I error rates; moreover, these procedures may yield more powerful inferences than a specialized procedure, especially when the number of available clusters is small. Within-cluster multiple imputation is shown to be the least powerful among the procedures considered.
-
Simultaneous inference is a common problem in many areas of application. If multiple null hypotheses are tested simultaneously, the probability of rejecting erroneously at least one of them increases beyond the pre-specified significance level. Simultaneous inference procedures have to be used which adjust for multiplicity and thus control the overall type I error rate. ⋯ The framework described here is quite general and extends the canonical theory of multiple comparison procedures in ANOVA models to linear regression problems, generalized linear models, linear mixed effects models, the Cox model, robust linear models, etc. Several examples using a variety of different statistical models illustrate the breadth of the results. For the analyses we use the R add-on package multcomp, which provides a convenient interface to the general approach adopted here.
-
The adequacy of sample size is important to clinical trials. In the planning phase of a trial, however, the investigators are often quite uncertain about the sizes of parameters which are needed for sample size calculations. ⋯ This review attempts to give an overview on the available methods. It is written not only for biometricians who are already familar with the the topic and wish to update their knowledge but also for users new to the subject.