Toxicology letters
-
Postnatal isoflurane exposure leads to neurodegeneration and deficits of spatial learning and memory in the adulthood. However, the underlying mechanisms remain unclear. Ribosomal protein S6 is demonstrated to play a pivotal role in control of cell survival, protein synthesis and synaptogenesis for brain development. ⋯ S6 activation could reverse the damages above. These results indicate that S6 inhibition, led by suppression of upstream IGF-1/MEK/ERK and IGF-1/PI3K/Akt signaling pathways, is involved in the neuroapoptosis, synaptogenesis impairment and spatial learning and memory decline caused by postnatal isoflurane exposure. S6 activation may exhibit protective potential against developmental neurotoxicity of isoflurane.