Toxicology letters
-
Because testing of nerve agents is limited to only authorized facilities, our laboratory developed several surrogates that resemble nerve agents because they phosphylate the acetylcholinesterase (AChE) with the same moiety as the actual nerve agents. The inhibition kinetic parameters were determined for AChE by surrogates of cyclosarin (NCMP), sarin (NIMP, PIMP and TIMP) and VX (NEMP and TEMP) and other organophosphorus compounds derived from insecticides. All compounds were tested with rat brain and a subset was tested with mouse brain and purified human erythrocyte AChE. ⋯ With the additional compounds tested only in rat brain, TEMP was slightly less potent than NEMP but more potent than PIMP which was more potent than NIMP. Methyl paraoxon was slightly less potent than paraoxon but more potent than TIMP which was more potent than DFP. Overall, this study validates that the pattern of inhibitory potencies of our surrogates is comparable to the pattern of inhibitory potencies of actual nerve agents (i.e., cyclosarin>VX>sarin), and that these are more potent than insecticidal organophosphates.
-
Opioids have been shown to affect prenatal and postnatal neural development in mammals. The present study investigates the impact of morphine sulfate (MS) treatment on neuronal differentiation as well as μ-opioid receptor (MOR) expression in mouse embryonic stem (mES) cells. Stem cells were manipulated in culture to differentiate in 3 sequential stages: Stage 1, cell transformation to embryoid bodies (EB); Stage 2, EB cell differentiation to neural progenitor (NP) cells; and, Stage 3, NP cell differentiation to neurons/astrocytes co-cultured cells. ⋯ Moreover, late stage treatment with MS and naltrexone inhibited the effect of MS on neuronal differentiation, suggesting that MS treatment interferes with differentiation via MOR activation. Together, the results show that MS exposure at early and late stage of cellular differentiation significantly decreases genotype and phenotype in differentiated neuronal cells. The results of this study have implications regarding the potential effect of opiates on fetal brain development.