Artificial organs
-
Comparative Study
The effects of pulsatile versus nonpulsatile perfusion on blood viscoelasticity before and after deep hypothermic circulatory arrest in a neonatal piglet model.
Blood trauma increases blood viscoelasticity by increasing red cell aggregation and plasma viscosity and by decreasing cell deformability. During extracorporeal circulation, the mode of perfusion (pulsatile or nonpulsatile) may have a significant impact on blood trauma. In this study, a hydraulically driven dual chamber pulsatile pump system was compared to a standard nonpulsatile roller pump in terms of changes in the blood viscosity and elasticity during cardiopulmonary bypass (CPB) and pre and post deep hypothermic circulatory arrest (DHCA). ⋯ Arterial blood samples were taken pre-CPB (36 degrees C), during normothermic CPB (35 degrees C), during hypothermic CPB (25 degrees C), pre-DHCA (18 degrees C), post-DHCA (19 degrees C), post-rewarming (35 degrees C), and post-CPB (36 degrees C). Viscosity and elasticity were measured at 2 Hz and 22 degrees C and at strains of 0.2, 1, and 5 using the Vilastic-3 Viscoelasticity Analyzer. Results suggest that the dual chamber neonate-infant pulsatile pump system produces less blood trauma than the standard nonpulsatile roller pump as indicated by lower values of both viscosity and elasticity during CPB support.