Artificial organs
-
This study investigated features and treatments of perioperative coagulopathies in cyanotic infants with complex congenital heart disease (CCHD). Thirty-six infants with cyanotic CCHD were involved and divided into two groups: In group H (n = 20), hematocrit (HCT) > 54%, and in group L (n = 16), HCT < 54%. Blood was sampled at anesthesia induction (T1), rewarming to 36 degrees C (T2), after heparin neutralization (T3), and 4 h after operation (T4). ⋯ After therapy, PLT function in both groups restored to T1 level (P > 0.05); Ffg at T4 was significantly better than at T1 (P < 0.01) in group H, but Ffg at T4 with still normal function was lower than at T1 in group L (P < 0.01). Whole hemostatic function at T4 was back to normal and had no differences between two groups. So, we proposed that fibrinogen and PLT transfusion in combination should be better for infants with high HCT CCHD, but PLT alone might be enough for low HCT ones.
-
We describe the occurrence and distribution of gaseous microemboli with real-time monitoring in a pediatric cardiopulmonary bypass (CPB) circuit and in the cerebral circulation of patients using the Emboli Detection and Classification (EDAC) system and transcranial Doppler (TCD). Four patients (weights 3.2-13.8 kg) were studied. EDAC monitors were located on the venous line and on the postfilter arterial line to measure gaseous microemboli in the CPB circuit. ⋯ The TCD detected HITS in two cases (25 and 315), and detected no HITS in two cases. We observed that the venous line acted as a principal source of gaseous microemboli, particularly when using vacuum-assisted venous drainage, and that a significant number of these gaseous microemboli smaller than 40 microns were subsequently transferred to the patient. Using EDAC and TCD together could strengthen the monitoring of gaseous microemboli in the extracorporeal circuit and cerebral circulation.
-
Comparative Study
Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
An increasing amount of evidence points to cerebral embolization during cardiopulmonary bypass (CPB) as the principal etiologic factor of neurologic complications. In this study, the capability of capturing and classification of gaseous emboli and pressure drop of three different membrane oxygenators (Sorin Apex, Terumo Capiox SX25, Maquet QUADROX) were measured in a simulated adult model of CPB using a novel ultrasound detection and classification quantifier system. The circuit was primed with 1000 mL heparinized human packed red blood cells and 1000 mL lactated Ringer's solution (total volume 2000 mL, corrected hematocrit 26-28%). ⋯ Microemboli counts uniformly increased with hypothermic perfusion (25 degrees C). Different types of oxygenators and reservoirs have different capability of capturing gaseous emboli and transmembrane pressure drop. Based on this investigation, Maquet QUADROX membrane oxygenator has the lowest pressure drop and better capability for capturing gaseous microemboli.
-
Due to improved outcome after surgery for congenital heart defects, children, adolescents, and grown-ups with congenital heart defects become an increasing population. In order to evaluate operative risk and early outcome after mechanical aortic valve replacement (AVR) in this population, we reviewed patients who underwent previous repair of congenital heart defects. Between July 2002 and November 2008, 15 (10 male and 5 female) consecutive patients (mean age 14.5 +/- 10.5 years) underwent mechanical AVR. ⋯ At the latest clinical evaluation, all patients were in good clinical condition without a pathological increased gradient across the aortic valve prosthesis or paravalvular leakage in echocardiography. Mechanical AVR has excellent results in patients after previous repair of congenital heart defects in childhood, even in combination with complex concomitant procedures. Previous operations do not significantly affect postoperative outcome.
-
The nonpulsatile blood flow obtained using standard cardiopulmonary bypass (CPB) circuits is still generally considered an acceptable, nonphysiologic compromise with few disadvantages. However, numerous reports have concluded that pulsatile perfusion during CPB achieves better multiorgan response postoperatively. ⋯ Therefore, we considered that optimizations of CPB unit and extracorporeal life support (ECLS) system circuit components were needed to deliver sufficient pulsatile flow. In addition, energy equivalent pressure, surplus hemodynamic energy, and total hemodynamic energy, calculated using pressure and flow waveforms, were used to evaluate the pulsatilities of pulsatile CPB and ECLS systems.