The Journal of clinical investigation
-
Patients with chronic uremia develop neurologic defects which are similar to the demyelinating lesions seen in thiamine deficiency. The present study describes inhibitory effects of uremic material on nervous tissue transketolase, a thiamine-dependent enzyme of the pentose phosphate pathway which has been reported to have functional importance in the metabolism of myelinated nervous structures. Transketolase activity (TKA) of normal human brain and spinal cord was measured by the conversion of ribose-5-phosphate (R5P) to sedoheptulose-7-phosphate (S7P). ⋯ Hemodialysis markedly reduced the inhibitory effects of the patients' plasma and the data indicate that uremic patients who received effective long-term dialysis treatment show a parallel decline of transketolase inhibition and uremic neuropathy. The findings demonstrate that in patients with chronic renal failure, low molecular weight factors accumulate and inhibit nervous tissue transketolase. This biochemical defect-uncorrectable by thiamine but reversible by dialysis-may interfere with the metabolism of myelin-supporting cells, and/or of the axonal metabolism of medullated structures, and may thus contribute to the degeneration of myelinated nerves seen with uremic neuropathy.
-
The mechanism of cholestasis (decreased bile flow) induced by taurolithocholate in the isolated perfused hamster liver was investigated. Taurocholate was infused to maintain bile acid output, and sulfobromophthalein (BSP) was administered to establish a BSP transport maximum in bile. The effects of taurolithocholate on bile flow and on the biliary secretion of BSP and bile acid anions were determined. ⋯ A substantial fraction (75%) of basal bile flow in the isolated hamster liver was estimated to be independent of bile acid secretion. Cholestasis occurred after taurolithocholate, whereas bile acid secretion was maintained. The results indicate that the most likely mechanism for acute cholestasis induced by taurolithocholate in isolated hamster liver was interference with the bile acid-independent fraction of canalicular or ductular bile flow or both.