The Journal of clinical investigation
-
Increased in vitro platelet aggregability and hypercoagulability are generally held to be main determinants in the prethrombotic state in nephrosis. In vivo, however, thrombotic events depend on the dynamic interaction of flowing blood with the vessel wall. The present study confirms that aggregability of platelets of nephrotic patients is significantly increased by mere stirring or by exogenous stimuli as adenosine diphosphate and arachidonic acid. ⋯ Therefore, our observations indicate that nephrotic hyperaggregability in suspension is not associated with increased platelet vessel wall-interaction under flow conditions. The latter is probably counteracted by high levels of fibrinogen. Our observations further suggest that hyperfibrinogenemia may be a major thrombotic risk factor in nephrosis by inducing more fibrin depositions.
-
Heparin-induced thrombocytopenia/thrombosis (HITP) is thought to be mediated by immunoglobulins that activate platelets in the presence of pharmacologic concentrations of heparin, but the molecular basis for this relatively common and often serious complication of heparin therapy has not been established. We found that plasma from each of 12 patients with HITP contained high titer (> or = 1:200) antibodies that reacted with immobilized complexes of heparin and platelet factor 4 (PF4), a heparin-binding protein contained in platelet alpha-granules. Recombinant human PF4 behaved similarly to PF4 isolated from platelets in this assay system. ⋯ Human umbilical vein endothelial cells, known to express heparin-like glycosaminoglycan molecules on their surface, were recognized by antibody in the presence of PF4 alone; this reaction was inhibited by excess heparin, but not by anti-Fc gamma RII. Antibodies reactive with heparin/PF4 were not found in normal plasma, but IgG and IgM antibodies were detected at dilutions of 1:10 (IgG) and 1:50 (IgM) in 3 of 50 patients (6%) with other types of immune thrombocytopenia. These findings indicate that antibodies associated with HITP react with PF4 complexed with heparin in solution or with glycosaminoglycan molecules on the surface of endothelial cells and provide the basis for a new hypothesis to explain the development of thrombocytopenia with thrombosis or disseminated intravascular coagulation in patients sensitive to heparin.
-
We dissected and perfused outer medullary vasa recta (OMVR) from vascular bundles in the rat. Permeabilities of sodium (PNa) and urea (Pu) were simultaneously determined from the lumen-to-bath efflux of 22Na and [14C]urea. PNa and Pu were also measured by in vivo microperfusion of descending (DVR) and ascending vasa recta (AVR) at the papillary tip of Munich-Wistar rats. ⋯ Transport of [14C] urea in OMVR was reversibly inhibited by addition of unlabeled urea or phloretin to the bath and lumen, providing evidence for carrier-mediated transport. These data suggest that sodium and urea might traverse the wall of inner medullary vasa recta by a paracellular pathway while urea also crosses by a transcellular route in OMVR. Electron microscopic examination of seven in vitro perfused OMVR revealed no fenestrations and exposure of these vessels to 10 microM calcium ionophore A23187 or 1 nM angiotensin II resulted in reversible contraction, suggesting that in vitro perfused OMVR are DVR only.
-
Knowledge of the pathogenetic mechanisms responsible for the activation of the coagulation system associated with endotoxemia is important for the development of improved modalities for prevention and treatment. We analyzed the appearance in plasma of TNF, IL-6, and indices of coagulation and fibrinolytic system activation in normal chimpanzees after intravenous infusion of endotoxin. Endotoxin infusion elicited reproducible and dose-dependent elevations in serum TNF and IL-6, as well as marked increases in thrombin generation in vivo as measured by immunoassays for prothrombin activation fragment F1 + 2, thrombin-antithrombin III complexes, and fibrinopeptide A. ⋯ Pentoxifylline markedly inhibited increases in the levels of TNF and IL-6, as well as the effects on coagulation and fibrinolysis. In contrast, the monoclonal antibody to tissue factor completely abrogated the augmentation in thrombin generation, but had no effect on cytokine levels or fibrinolysis. We conclude that the endotoxin-induced activation of coagulation appears to be mediated by the tissue factor-dependent pathway, the fibrinolytic response triggered by endotoxin is not dependent on the generation of thrombin, and that the release of cytokines may be important in mediating the activation of both the coagulation and the fibrinolytic mechanisms in vivo.