The Journal of clinical investigation
-
Translation of novel therapies for type 1 diabetes and other autoimmune diseases to the clinic has been slow despite significant new initiatives from funding agencies. One reason for this is that different incentives drive industry, academia, and funding bodies. These communities therefore lack common goals and often communicate poorly, resulting in unintended obstacles that hamper progress in efficiently translating basic scientific discoveries into medical practice. Here, based on our own personal experiences, we discuss some of the drivers within each community that cause these problems, existing mechanisms to facilitate the translation of science into medical practice, and remaining issues that need to be solved.
-
Neuropathy and myopathy can cause weakness during critical illness. To determine whether reduced excitability of peripheral nerves, rather than degeneration, is the mechanism underlying acute neuropathy in critically ill patients, we prospectively followed patients during the acute phase of critical illness and early recovery and assessed nerve conduction. During the period of early recovery from critical illness, patients recovered from neuropathy within days. ⋯ There was no depolarization of axon resting potential in septic rats, which ruled out a contribution of resting potential to the increased inactivation of sodium channels. Our data suggest that a hyperpolarized shift in the voltage dependence of sodium channel inactivation causes increased sodium inactivation and reduced excitability. Acquired sodium channelopathy may be the mechanism underlying acute neuropathy in critically ill patients.