Neurosurgery
-
Cell therapies have the potential to revolutionize the treatment of spinal cord injury. Basic research has progressed significantly in recent years, with a plethora of cell types now reaching early-phase human clinical trials, offering new strategies to repair the spinal cord. However, despite initial enthusiasm for preclinical and early-phase clinical trials, there has been a notable hiatus in the translation of cell therapies to routine clinical practice. ⋯ A total of 37 cell therapy trials have been published, primarily using stem cells, although a smaller number have used Schwann cells or olfactory ensheathing cells. Significant challenges remain for cell therapy trials in this area, including achieving stringent regulatory standards, ensuring appropriately powered efficacy trials, and establishing sustainable long-term funding. However, cell therapies hold great promise for human spinal cord repair and future trials must continue to capitalize on the exciting developments emerging from preclinical studies.
-
Neurodegenerative diseases and spinal cord injury can affect respiratory function often through motor neuron loss innervating the diaphragm. To reinnervate this muscle, new motor neurons could be transplanted into the phrenic nerve (PN), allowing them to extend axons to the diaphragm. These neurons could then be driven by an optogenetics approach to regulate breathing. This type of approach has already been demonstrated in the peripheral nerves of mice. However, there is no established thoracoscopic approach to PN injection. Also, there is currently a lack of preclinical large animal models of diaphragmatic dysfunction in order to evaluate the efficacy of potential treatments. ⋯ Thoracoscopic targeting of the porcine PN is a feasible approach to administer therapeutic agents. A swine model of hemidiaphragmatic paralysis induced by unilateral PN ligation or transection may be potentially used to study diaphragmatic reinnervation following delivery of therapeutics.
-
Even though neurosurgeons exercise these enormous and versatile skills, the COVID-19 pandemic has shaken the fabrics of the global neurosurgical family, jeopardizing human lives, and forcing the entire world to be locked down. We stand on the shoulders of the giants and will not forget their examples and their teachings. ⋯ Professor Harvey Cushing said: "When to take great risks; when to withdraw in the face of unexpected difficulties; whether to force an attempted enucleation of a pathologically favorable tumor to its completion with the prospect of an operative fatality, or to abandon the procedure short of completeness with the certainty that after months or years even greater risks may have to be faced at a subsequent session-all these require surgical judgment which is a matter of long experience." It is up to us, therefore, to keep on the noble path that we have decided to undertake, to accumulate the surgical experience that these icons have shown us, the fruit of sacrifice and obstinacy. Our tribute goes to them; we will always remember their excellent work and their brilliant careers that will continue to enlighten all of us.
-
A dramatic improvement in obliteration rates of large, wide-necked aneurysms has been observed after the FDA approved the Pipeline Embolization Device (PED) in 2011. ⋯ Flow diversion is a safe and effective treatment option for aneurysms. A better understanding of predictive factors of complications, morbidity, and functional outcomes is of high importance for a more accurate risk assessment.