Muscle & nerve
-
Age significantly influences the detection thresholds to noxious heat; such thresholds depend on responses in the cerebral cortex to thermal stimuli and the psychophysical perception of such responses. To understand the influence of age on cerebral responses, we used contact heat-evoked potentials (CHEPs) to investigate the physiology of cerebral responses to thermal stimuli in 70 healthy subjects (33 men and 37 women, 39.56 +/- 12.12 years of age). With heat stimulation of fixed intensity (51 degrees C) on the distal forearm and distal leg, CHEPs revealed consistent waveforms with an initial negative peak (N1 latency: 398.63 +/- 28.55 and 449.03 +/- 32.21 ms for upper and lower limbs) and a later positive peak (P1 latency: 541.63 +/- 37.92 and 595.41 +/- 39.24 ms for upper and lower limbs) with N1-P1 interpeak amplitude of 42.30 +/- 12.57 microV in the upper limb and 39.67 +/- 12.03 microV in the lower limb. ⋯ The verbal rating scale (VRS) for pain perception was higher in females than males, and decreased with aging. In addition, VRS paralleled changes in N1-P1 amplitude and N1 latency; the higher the VRS, the shorter the N1 latency and the higher the N1-P1 amplitude. These results provide evidence that CHEPs are influenced significantly by aging, corresponding to aging-related changes in thermal pain perception.
-
We used immunohistochemical techniques and confocal microscopy to study the morphometry of myelinated nerve endings in glabrous and hairy skin. A total of 30 healthy volunteers took part in this study designed to assess the possibility of obtaining reliable information on myelinated fibers using samples of hairy skin and to determine whether differences exist between myelinated terminations from different sites. ⋯ However, from a comparison of our findings with data from nerve biopsy studies, we conclude that all cutaneous myelinated terminations are thinner terminal branches of large myelinated A beta fibers, whereas cutaneous terminations of small myelinated A delta fibers lose their myelin before entering the dermis and become indistinguishable from C-fiber terminations. The classic criteria, based on fiber size, used to distinguish myelinated fiber subgroups in sensory nerves are therefore not suitable for identifying myelinated terminations in the skin.
-
The pathophysiology of hepatic neuropathy is poorly understood, but membrane depolarization due to a toxic inhibition of oxidative metabolism has been proposed. We investigated the relationship between nerve excitability properties, nerve dysfunction, and liver function in 11 pretransplant patients, the majority of whom were oligo- or asymptomatic for peripheral neuropathy. Abnormalities were detected on clinical examination (6), large-fiber nerve conduction (4), and thermal quantitative sensory testing (10). ⋯ Nerve excitability parameters in both upper and lower limbs provided evidence of membrane depolarization compared with controls, even in those patients without a history of alcohol abuse. No clear correlation was found between neurophysiological indices and scores of hepatic reserve or various blood parameters including ammonia level. Although chronic membrane depolarization may be involved, the degree of depolarization in large fibers was small, and its role in the pathophysiology of neuropathy uncertain.
-
This review provides a comprehensive overview of the clinical uses of neuromuscular electrical stimulation (NMES) for functional and therapeutic applications in subjects with spinal cord injury or stroke. Functional applications refer to the use of NMES to activate paralyzed muscles in precise sequence and magnitude to directly accomplish functional tasks. ⋯ Specific therapeutic applications include motor relearning, reduction of hemiplegic shoulder pain, muscle strengthening, prevention of muscle atrophy, prophylaxis of deep venous thrombosis, improvement of tissue oxygenation and peripheral hemodynamic functioning, and cardiopulmonary conditioning. Perspectives on future developments and clinical applications of NMES are presented.
-
Case Reports
Meralgia paresthetica caused by hip-huggers in a patient with aberrant course of the lateral femoral cutaneous nerve.
"Hip-huggers" may be a precipitating factor for meralgia paresthetica (MP), especially in thin persons with an aberrant pathway of the lateral femoral cutaneous nerve (LFCN). We describe a 25-year-old woman with a long-standing history of MP caused by an abnormal course of the LFCN and tight trousers, specifically hip-huggers. Ultrasonography was useful for detecting the lesion site and the abnormal pathway of the LFCN. After neurectomy of the LFCN, most of the symptoms of MP were relieved, but mild hypesthesia remained in the lateral thigh.