International journal of pharmaceutics
-
Cremophor-free intravenous microemulsions for paclitaxel I: formulation, cytotoxicity and hemolysis.
Two cremophor-free microemulsions, lecithin:butanol:myvacet oil:water (LBMW) and capmul:myvacet oil:water (CMW) for paclitaxel (PAC) were developed for intravenous (i.v.) administration. Six surfactants and four oils were screened with various combinations for maximal water incorporation and PAC solubility. Microemulsion regions were subsequently determined in ternary phase diagrams. ⋯ Promising microemulsions, LBMW and CMW were developed that can incorporate approximately 12 mg/g of PAC, substantially higher than its aqueous solubility (10.8 microg/ml) and that in the Taxol vehicle (6 mg/ml). PAC retained its cytotoxicity in the LBMW and CMW and was less likely to cause hemolysis compared to Taxol. This higher drug loading results in a smaller vehicle volume in required doses of these formulations and potentially less vehicle-related side effects are anticipated.
-
The aim of this study was to assess the feasibility of radiosterilization of drugs aqueous solutions and to evaluate the effects of some additives, such as mannitol, nicotinamide and pyridoxine, which might protect the drug from degradation. Metoclopramide was selected as a model drug. The structures of the degradation products were determined to gain insight on the radiolysis mechanisms in aqueous solution in order to design strategies to lower the drug degradation. ⋯ Metoclopramide recovery for gamma and electron beam-irradiated solutions containing either mannitol, pyridoxine or nicotinamide meets the pharmacopoeial specifications for metoclopramide content up to a 15 kGy irradiation so that metoclopramide solutions containing these excipients might be radiosterilized at 15 kGy either with gamma rays or high-energy electrons. Structures are proposed for the majority of radiolysis products. Similar radiolysis products were detected for gamma and electron beam irradiations but the chromatographic profiles were different (differences in the distribution of radiolysis products).
-
Two cremophor-free microemulsion systems LBMW (lecithin:butanol:myvacet:water) and CMW (capmul:myvacet:water), for intravenous (IV) administration of paclitaxel (PAC) were previously developed and characterized. Their chemical stability, in vitro release and pharmacokinetics of PAC were assessed using Taxol (cremophor:ethanol 1:1, 6 mg/ml) as a reference. The shelf-lives of PAC at 25 degrees C in Taxol, LBMW and CMW, in an accelerated stability study, were 71, 57 and 31 days, respectively. ⋯ The extents of release of PAC from LBMW and CMW were 25 and 50% of that from Taxol. In vivo pharmacokinetic studies in male Sprague-Dawley rats after IV administration revealed that PAC in LBMW and CMW remained in the systemic circulation five and two times longer and was eight and three times more widely distributed than PAC from Taxol. LBMW and CMW offer a significant clinical advantage in terms of the prolonged half-life and wide tissue distribution, indicating that PAC delivered by these systems intravenously may result in prolonged exposure of PAC to the tumor and subsequently an improved clinical efficacy.