Annals of plastic surgery
-
Annals of plastic surgery · Aug 1999
Effect of TGF-beta2 on proliferative scar fibroblast cell kinetics.
Keloids, hypertrophic scars, and burn hypertrophic scars are all forms of proliferative scarring characterized by overabundant matrix formation. Recently these dermal proliferative disorders have been linked clinically to the cytokine transforming growth factor beta (TGF-beta), and in vitro tests have shown it to be responsible for the activation of fibroblasts and their production and deposition of collagen. Using an established in vivo animal model of proliferative scarring, the effects of this cytokine, specifically the isoform TGF-beta2, on these scars were examined. ⋯ This was not demonstrated with the nonburn hypertrophic scars. Elevated levels of TGF-beta2 are a major contributing factor to the process of proliferative scars, but because nonburn hypertrophic scars do not result in an equally increased response to this cytokine, a truly causative role for this cytokine cannot be promulgated. Rather, it is the combination of the proliferative scar fibroblasts' abnormal response to TGF-beta2 stimulation and elevated levels of this cytokine that controls more accurately the process of keloid and burn hypertrophic scar formation.