Neuroscience and biobehavioral reviews
-
Neurosci Biobehav Rev · Jun 2009
ReviewStress-induced prefrontal reorganization and executive dysfunction in rodents.
The prefrontal cortex (PFC) mediates a range of higher order 'executive functions' that subserve the selection and processing of information in such a way that behavior can be planned, controlled and directed according to shifting environmental demands. Impairment of executive functions typifies many forms of psychopathology, including schizophrenia, mood and anxiety disorders and addiction, that are often associated with a history of trauma and stress. ⋯ In parallel, there is growing evidence that stress-induced alterations in PFC neuronal morphology are associated with deficits in rodent executive functions such as working memory, attentional set-shifting and cognitive flexibility, as well as emotional dysregulation in the form of impaired fear extinction. Although the molecular basis of stress-induced changes in PFC morphology and function are only now being elucidated, an understanding of these mechanisms could provide important insight into the pathophysiology of executive dysfunction in neuropsychiatric disease and foster improved strategies for treatment.
-
Neurosci Biobehav Rev · Jun 2009
ReviewContribution of the activation of satellite glia in sensory ganglia to pathological pain.
Peripheral tissue injury/inflammation can alter the properties of somatic sensory pathways, resulting in behavioral hypersensitivity and pathological and/or chronic pain, including increased responses to pain caused by both noxious stimuli (hyperalgesia) and normally innocuous stimuli (allodynia). Although there are increasing reports that glia in the spinal cord contribute to the maintenance of pathological pain, recent evidence suggests that activation of satellite glia in sensory ganglia may also play an important role in the development of hyperalgesia and allodynia. ⋯ The focus of the present review is on the contribution of the activation of satellite glia in sensory ganglia to pathological pain. In addition, we discuss potential therapeutic targets in satellite glia-neuronal interactions for the prevention of pathological pain.
-
Neurosci Biobehav Rev · Jun 2009
ReviewRodent models of insomnia: a review of experimental procedures that induce sleep disturbances.
Insomnia, the most common sleep disorder, is characterized by persistent difficulty in falling or staying asleep despite adequate opportunity to sleep, leading to daytime fatigue and mental dysfunction. As sleep is a sophisticated physiological process generated by a network of neuronal systems that cannot be reproduced in-vitro, pre-clinical development of hypnotic drugs requires in-vivo investigations. ⋯ Only few valid insomnia models are currently available, although many experimental conditions lead to disturbance of physiological sleep. We categorized these conditions as a function of the procedure used to induce perturbation of sleep, and we discuss their respective advantages and pitfalls with respect to validity, feasibility and translational value to human research.