Environment international
-
Careful planning and regular exercising of capabilities is the key to implementing an effective response following the release of hazardous materials, although ad hoc changes may be inevitable. Critical actions which require immediate implementation at an incident are evacuation, followed by disrobing (removal of clothes) and decontamination. The latter can be achieved through bespoke response facilities or various interim methods which may utilise water or readily available (dry, absorbent) materials. Following transfer to a safe holding area, each casualty's personal details should be recorded to facilitate a health surveillance programme, should it become apparent that the original contaminant has chronic health effects.
-
Environment international · Nov 2014
Understanding public responses to chemical, biological, radiological and nuclear incidents--driving factors, emerging themes and research gaps.
This paper discusses the management of public responses to incidents involving chemical, biological, radiological and nuclear materials (CBRN). Given the extraordinary technical and operational challenges of a response to a CBRN release including, but not limited to, hazard detection and identification, casualty decontamination and multi-agency co-ordination, it is not surprising that public psychological and behavioural responses to such incidents have received limited attention by scholars and practitioners alike. ⋯ This limitation must be addressed as a CBRN release has the potential to have wide-reaching psychological and behavioural impacts which, in turn, impact upon public morbidity and mortality rates. This paper addresses a number of key issues: why public responses matter; how responses have been conceptualised by practitioners; what factors have been identified as influencing public responses to a CBRN release and similar extreme events, and what further analysis is needed in order to generate a better understanding of public responses to inform the management of public responses to a CBRN release.
-
Environment international · Jul 2014
Serum levels of club cell secretory protein (Clara) and short- and long-term exposure to particulate air pollution in adolescents.
Studies in populations have shown that particulate air pollution is associated with changes in lung function in adolescents. ⋯ Our findings suggest that short-term exposure to particulate air pollution may compromise the integrity of the lung epithelium and lead to increased epithelial barrier permeability in the lungs of adolescents, even at low concentrations.
-
Environment international · May 2014
Meta AnalysisLong-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects.
Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. ⋯ In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality.
-
Environment international · Mar 2014
Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: a modeling study for radiocaesium ((134)Cs &(137)Cs).
The accident at the Fukushima Daiichi Nuclear Power Plant (NPP) in Japan resulted in the release of a large number of fission products that were transported worldwide. We study the effects of two of the most dangerous radionuclides emitted, (137)Cs (half-life: 30.2years) and (134)Cs (half-life: 2.06years), which were transported across the world constituting the global fallout (together with iodine isotopes and noble gasses) after nuclear releases. The main purpose is to provide preliminary cancer risk estimates after the Fukushima NPP accident, in terms of excess lifetime incident and death risks, prior to epidemiology, and compare them with those occurred after the Chernobyl accident. ⋯ Excess lifetime cancer incidents were estimated to be between 360 and 850, whereas 220-520 of them will be fatal. Nevertheless, these numbers are expected to be even smaller, as the response of the Japanese official authorities to the accident was rapid. The projected cancer incidents are much lower than the casualties occurred from the earthquake itself (>20,000) and also smaller than the accident of Chernobyl.