Sleep
-
Randomized Controlled Trial Clinical Trial
The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.
To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. ⋯ Since chronic restriction of sleep to 6 h or less per night produced cognitive performance deficits equivalent to up to 2 nights of total sleep deprivation, it appears that even relatively moderate sleep restriction can seriously impair waking neurobehavioral functions in healthy adults. Sleepiness ratings suggest that subjects were largely unaware of these increasing cognitive deficits, which may explain why the impact of chronic sleep restriction on waking cognitive functions is often assumed to be benign. Physiological sleep responses to chronic restriction did not mirror waking neurobehavioral responses, but cumulative wakefulness in excess of a 15.84 h predicted performance lapses across all four experimental conditions. This suggests that sleep debt is perhaps best understood as resulting in additional wakefulness that has a neurobiological "cost" which accumulates over time.
-
Fruit flies exhibit a sleep-like rest state that shares behavioral characteristics with mammalian sleep, including a homeostatic increase in rest after deprivation by mechanical methods. We tested the effect of modafinil, a novel wake-promoting agent, to discover whether its effect is conserved. Flies fed various concentrations of modafinil were compared to groups of control flies fed diluent only. ⋯ However, modafinil withdrawal combined with 6H total rest deprivation significantly enhanced the rebound, suggesting that a rest debt is accumulating during modafinil. We conclude that modafinil affects states of arousal in Drosophila in the same direction as it does in mammals. This discovery provides a tool for searching for conserved molecular mechanisms by which modafinil regulates rest and waking.