Sleep
-
Randomized Controlled Trial Multicenter Study
Respiratory event detection by a positive airway pressure device.
Compare automatic event detection (AED) of respiratory events using a positive airway pressure (PAP) device with manual scoring of polysomnography (PSG) during PAP treatment of obstructive sleep apnea (OSA). ⋯ An AHI < 10 events/hr by PAP AED is usually associated with good treatment efficacy. Differences between manually scored and AED events were primarily due to different criteria for hypopnea detection.
-
Objective physiologic data on sleep and nocturnal breathing at initial exposure and during acclimatization to high altitude are scant. We tested the hypothesis that acute exposure to high altitude induces quantitative and qualitative changes in sleep and that these changes are partially reversed with acclimatization. ⋯ In healthy mountaineers ascending rapidly to high altitude, sleep quality is initially impaired but improves with acclimatization in association with improved oxygen saturation, while periodic breathing persists. Therefore, high altitude sleep disturbances seem to be related predominantly to hypoxemia rather than to periodic breathing.
-
To examine the impact of using a nasal pressure sensor only vs the American Academy of Sleep Medicine (AASM) recommended combination of thermal and nasal pressure sensors on (1) the apnea index (AI), (2) the apnea-hypopnea index (AHI), where the AHI is calculated using both AASM definitions of hypopnea, and (3) the accuracy of a diagnosis of obstructive sleep apnea (OSA). ⋯ This study demonstrates that using only a nasal pressure sensor for the detection of apnea resulted in higher values of AI and AHI than when the AASM recommended thermal sensor was added to detect apnea. When the AASM(alt) hypopnea definition was used, the differences in AHI and subsequent OSA diagnosis were small and less than when the AASM(rec) hypopnea definition was used. In situations in which a thermal sensor cannot be used, for example, in limited-channel diagnostic devices, the AHI obtained with a nasal pressure sensor alone differs less from the AHI obtained from a polysomnogram that includes a thermal sensor when the AASM(alt) definition rather than the AASM(rec) definition of hypopnea is used. Thus, diagnostic accuracy is impacted both by the absence of the thermal sensor and by the rules used to analyze the polysomnography. Furthermore, where the thermal sensor is unreliable for sections of a study, it is likely that use of the nasal pressure signal to detect apnea will have modest impact.