Developmental neuroscience
-
Mitochondria play a central role in cerebral energy metabolism, intracellular calcium homeostasis and reactive oxygen species generation and detoxification. Following traumatic brain injury (TBI), the degree of mitochondrial injury or dysfunction can be an important determinant of cell survival or death. Literature would suggest that brain mitochondria from the developing brain are very different from those from mature animals. ⋯ This review will focus on four main areas of secondary injury after pediatric TBI, including excitotoxicity, oxidative stress, alterations in energy metabolism and cell death pathways. Specifically, we will describe what is known about developmental differences in mitochondrial function in these areas, in both the normal, physiologic state and the pathologic state after pediatric TBI. The ability to identify and target aspects of mitochondrial dysfunction could lead to novel neuroprotective therapies for infants and children after severe TBI.
-
Inflicted traumatic brain injury (iTBI) involves a combination of mechanical trauma and hypoxemia. Serum biomarker concentrations may provide objective information about their relative importance to the pathophysiology of iTBI. We compared the time course of neuron-specific enolase (NSE), S100B and myelin basic protein after pediatric hypoxic-ischemic brain injury, iTBI and noninflicted TBI (nTBI). ⋯ Initial NSE concentration was highest after nTBI. These results suggest that the biochemical response of the brain to iTBI is distinct from the response to nTBI and shares temporal similarities with hypoxic-ischemic brain injury. This may have important implications for the treatment and prognosis of children with iTBI.
-
Based on recent work demonstrating age-dependent ketogenic neuroprotection after traumatic brain injury (TBI), it was hypothesized that the neuroprotection among early post-weaned animals was related to induced cerebral transport of ketones after injury. Regional changes in monocarboxylate transporter 2 (MCT2) were acutely examined with immunohistochemistry after sham surgery or controlled cortical impact injury among postnatal day 35 and adult rats. ⋯ Using Western blotting, MCT2 expression was 80-88% greater in microvessels isolated from postnatal day 35 rats at all time points relative to adults. The increased MCT2 expression was temporally correlated with an age-related increase in cerebral uptake of ketones, when ketones were made available after injury.
-
Randomized Controlled Trial Multicenter Study
Hypothermia pediatric head injury trial: the value of a pretrial clinical evaluation phase.
The utility of a pretrial clinical evaluation or run-in phase prior to conducting trials of complex interventions such as hypothermia therapy following severe traumatic brain injury in children and adolescents has not been established. ⋯ The pretrial clinical evaluation phase was useful to ensure compliance with complex hypothermia therapy and consensus-based clinical management guidelines of care successfully implemented across 17 of 18 centers. This study maneuver allowed us to complete a subsequent RCT in 225 children following severe traumatic brain injury.
-
In this review, five questions serve as the framework to discuss the importance of age-related differences in the pathophysiology and therapy of traumatic brain injury (TBI). The following questions are included: (1) Is diffuse cerebral swelling an important feature of pediatric TBI and what is its etiology? (2) Is the developing brain more vulnerable than the adult brain to apoptotic neuronal death after TBI and, if so, what are the clinical implications? (3) If the developing brain has enhanced plasticity versus the adult brain, why are outcomes so poor in infants and young children with severe TBI? (4) What contributes to the poor outcomes in the special case of inflicted childhood neurotrauma and how do we limit it? (5) Should both therapeutic targets and treatments of pediatric TBI be unique? Strong support is presented for the existence of unique biochemical, molecular, cellular and physiological facets of TBI in infants and children versus adults. Unique therapeutic targets and enhanced therapeutic opportunities, both in the acute phase after injury and in rehabilitation and regeneration, are suggested.