Developmental neuroscience
-
The American Heart Association has endorsed the use of mild hypothermia for adults after cardiopulmonary arrest. However, there are no contemporary trials testing hypothermia in children after cardiopulmonary arrest and extrapolation from adult studies is problematic given differences in brain development and primary etiology (asphyxia in children vs. ventricular arrhythmia in adults). Accordingly, we tested the effects of mild postresuscitative hypothermia on functional and histopathological outcome after asphyxial cardiac arrest in juvenile rats. ⋯ Neurodegeneration in the CA1 hippocampus assessed using Fluoro-Jade B labeling at 5 weeks was not detected in the 32 degrees C group, whereas 2/7 and 4/7 rats in the 34 and 37 degrees C groups, respectively, showed neurodegeneration. Brief treatment with moderate induced hypothermia improved functional outcome and prevented long-term neurodegeneration in a model that mimics the clinical and histopathological scenario of pediatric cardiac arrest. Similar to adults, infants and children may benefit from induced hypothermia after cardiopulmonary arrest, warranting further study.
-
Hypoxia-ischemia (H/I) as a result of asphyxia at term remains a major cause of neurologic disability. Our previous studies in the P7 rat model of perinatal H/I have shown that progenitors within the subventricular zone (SVZ) are vulnerable to this insult. Since many investigators are using transgenic and knockout mice to determine the importance of specific molecules in the evolution of damage after a stroke, there is a need to perform comparative studies on the relative vulnerability of the mouse SVZ. ⋯ At 18 h of recovery, there was a 2-fold increase in the frequency of TUNEL+ cells in the ipsilateral SVZ as well as a 3-fold increase in the frequency of active-caspase-3+ cells. We conclude that progenitors within the neonatal mouse SVZ are vulnerable to hypoxic/ischemic insult. The demise of these early progenitors likely leads to depletion of neuronal and late oligodendrocyte progenitors, contributing to cerebral dysgenesis.
-
Tight glycemic control during diabetic pregnancy has been shown to significantly reduce the occurrence of congenital malformations and other effects of maternal diabetes on the offspring. However, intensive insulin therapy often causes recurring acute maternal hypoglycemia, which has been found to be harmful to the developing fetus, although the mechanisms involved are not clear. The aim of our work was to study the effect of acute insulin-induced maternal hypoglycemia on glucose metabolism in the fetal brain. ⋯ The relative glucose (or glucose-derived lactate) flux via the pyruvate carboxylase and pyruvate dehydrogenase pathways (PC/PDH ratio) was not altered under hypoglycemic conditions in the fetal brain for both glutamine and glutamate, but significantly increased in the adult brain for both glutamine and glutamate. The presented data indicate the ability of the fetal brain to maintain energy metabolism during acute hypoglycemia, via lactate utilization. The increase in the adult PC/PDH ratio was suggested by us to stem from increased PC activity, in order to replenish TCA cycle intermediates.
-
The medial preoptic area (mPOA) of the hypothalamus contains a sexually dimorphic nucleus (SDN-POA) that is 5-7 times larger in males than females and which contributes to the development and expression of male-specific sex behaviors in adulthood. Aside from a critical role for estrogen, the mechanisms that establish and maintain this sex difference are largely unknown. Differences in the size of the SDN-POA are thought to be related to estrogen-associated effects on programmed cell death (apoptosis) during early neonatal development. ⋯ In experiment 2, again no Fos-immunoreactive cells were detected in the SDN-POA of animals examined on PN 5-12. However, there was an increase in the number of pyknotic cells in the area surrounding and including the SDN-POA of females relative to males at PN 5, 7 and 12. Collectively, the data suggest that (1) anogenital grooming during early postnatal development induces a rapid activation of cells in the ventral mPOA, but not in the SDN-POA of rats, (2) there is a greater incidence of cell death in and around the SDN-POA of females vs. males during neonatal development, particularly toward the end of the hormone-sensitive critical period, and (3) Fos expression does not appear to be correlated with the sexually dimorphic development of, and/or programmed cell death within, the developing SDN-POA.
-
Myelin sheaths develop in the central nervous system (CNS) as elaborations of the processes of oligodendrocytes. Although many details of the spiral wrapping of oligodendrocyte processes around axons and their subsequent transformation into myelin sheaths are known from thin-section electron-microscopic studies, the three-dimensional architecture of the myelin-forming cells is incompletely understood. To characterize this aspect of oligodendrocyte development, we labeled thick (100- to 300-microns) sections of developing murine CNS with oligodendrocyte marker antibodies, recorded individual cells in serial optical sections by confocal microscopy, and created whole-cell reconstructions of oligodendrocytes before and during the initiation of myelination. ⋯ Three-dimensional analysis of the earliest stages in myelin sheath formation reveals two distinct phases. The initiating event in the formation of myelin internodes is the growth of thin unbranched processes, termed 'initiator processes', along axons. The second phase, spiral ensheathment of target axons, begins through the elaboration from each initiator process of lamellar extensions which extend circumferentially around the target axon and thereby form the first turn of its myelin sheath.