Developmental neuroscience
-
Observational Study
Optimizing Cerebral Autoregulation May Decrease Neonatal Regional Hypoxic-Ischemic Brain Injury.
Therapeutic hypothermia provides incomplete neuroprotection for neonatal hypoxic-ischemic encephalopathy (HIE). We examined whether hemodynamic goals that support autoregulation are associated with decreased brain injury and whether these relationships are affected by birth asphyxia or vary by anatomic region. ⋯ Blood pressure deviation from optimal autoregulatory vasoreactivity was associated with MRI markers of brain injury that, in many regions, were independent of the initial birth asphyxia. Targeting hemodynamic ranges to optimize autoregulation has potential as an adjunctive therapy to hypothermia for HIE.
-
During human brain development, anatomic regions mature at different rates. Quantitative anatomy-specific analysis of longitudinal diffusion tensor imaging (DTI) and magnetic resonance spectroscopic imaging (MRSI) data may improve our ability to quantify and categorize these maturational changes. Computational tools designed to quickly fuse and analyze imaging information from multiple, technically different datasets would facilitate research on changes during normal brain maturation and for comparison to disease states. ⋯ The largest significant percent increase in N-acetylaspartate (NAA)/creatine (Cr) ratio was seen in the brain stem (BS) (18.8%) followed by the subcortical regions in the BG (11.9%), CC (8.9%), and TH (6.0%). We found consistent, significant (p < 0.01), but weakly positive correlations (r = 0.228-0.329) between NAA/Cr ratios and mean FA in the BS, BG, and CC regions. Age- and region-specific normative MR diffusion and spectroscopic metabolite ranges show brain maturation changes and are requisite for detecting abnormalities in an injured or diseased population.
-
Neonatal lipopolysaccharide (LPS) exposure-induced brain inflammation resulted in motor dysfunction and brain dopaminergic neuronal injury, and increased the risks of neurodegenerative disorders in adult rats. Our previous studies showed that intranasal administration of insulin-like growth factor-1 (IGF-1) protects against LPS-induced white matter injury in the developing rat brain. To further examine whether IGF-1 protects against LPS-induced brain neuronal injury and neurobehavioral dysfunction, recombinant human IGF-1 (rhIGF-1) at a dose of 50 µg/pup was administered intranasally 1 h following intracerebral injection of LPS (1 mg/kg) in postnatal day 5 (P5) Sprague-Dawley rat pups. ⋯ Intranasal rhIGF-1 treatment attenuated LPS-induced central catecholaminergic neuronal injury and motor behavioral disturbances, including locomotion, beam walking test and gait analysis. Intranasal rhIGF-1 administration also attenuated LPS-induced elevation of IL-1β levels and numbers of activated microglia, and cyclooxygenase-2+ cells, which were double labeled with TH+ cells in the SN, VTA, OB and LC of the P21 rat brain. These results suggest that IGF-1 may provide protection against neonatal LPS exposure-induced central catecholaminergic neuronal injury and motor behavioral disturbances, and that the protective effects are associated with the inhibition of microglia activation and the reduction of neuronal oxidative stress by the suppression of the neuronal cyclooxygenase-2 expression.
-
Development and aging are influenced by external factors with the potential to impact health throughout the life span. Traumatic brain injury (TBI) can initiate and sustain a lifetime of physical and mental health symptoms. Over 1.7 million TBIs occur annually in the USA alone, with epidemiology suggesting a higher incidence for young age groups. ⋯ A single diffuse TBI did not result in chronic depression-like behaviors or changes in body weight among any groups. The interplay of age at injury and aging with an injury are translationally important factors that influence behavioral performance as a quality of life metric. More complete understanding of these factors can direct rehabilitative efforts and personalized medicine for TBI survivors.
-
Local circuit GABAergic neurons, including parvalbumin (PV)-containing basket cells, likely play a key role in the development, physiology, and pathology of neocortical circuits. Regionally selective and well-defined decreases in PV have been described in human postmortem schizophrenic brain tissue in both the hippocampus and prefrontal cortex. Animal models of schizophreniform dysfunction following acute and/or chronic ketamine treatment have also demonstrated decreases in PV expression. ⋯ Our findings suggest that the hippocampal PV+ cell number significantly decreases as a function of age with considerable regional (CA1, CA3, and DG) and septotemporal variation, a finding that was specific to the hippocampus. Additionally, we observed a modest increase in PV cell number within the prefrontal (anterior cingulate) cortex, which is in line with findings indicating a delayed developmental maturation of this region. The present work highlights decreases in PV+ cell counts within the hippocampus across development, and points to the need for a greater understanding of the role of PV and local circuit developmental changes, as well as consideration of their development when modeling developmentally related neuropathological disorders (e.g. schizophrenia, autism).