Journal of ethnopharmacology
-
Review
Running out of time to smell the roseroots: Reviewing threats and trade in wild Rhodiola rosea L.
Rhodiola rosea L. has a circumpolar distribution and is used in ethnomedicines of Arctic peoples, as well as in national systems of traditional medicine. Since the late 20th century, global demand for R. rosea has increased steadily, in part due to clinical research supporting new uses in modern phytotherapy. Global supply has been largely obtained from wild populations, which face threats from poorly regulated and destructive exploitation of the rootstocks on an industrial scale. ⋯ Our assessment of historical and current data from multiple disciplines shows that future monitoring and protection of R. rosea populations is of time-sensitive importance to the fields of ethnobotany, ethnopharmacology, phytochemistry and phytomedicine. We found that the global demand for R. rosea ingredients and products has been increasing in the 21st century, while wild populations in the main commercial harvesting areas continue to decrease, with conservation issues and reduced supply in some cases. The level of illegal harvesting in protected areas and cross border smuggling is increasing annually coupled with increasing incidences of adulteration and substitution of R. rosea with other wild Rhodiola species, potentially negatively impacting the conservation status of their wild populations, but also an indicator of scarcity of the genuine article. The current data suggests that the historical primary reliance on sourcing from wild populations of R. rosea should transition towards increased sourcing of R. rosea from farms that are implementing conservation oriented sustainable agricultural methods, and that sustainable wild collection standards must be implemented for sourcing from wild populations.
-
Coreopsis tinctoria Nutt. (family Asteraceae) is an important traditional medicine in North America, Europe, and Asia for quite a long historical period, which has received great attention due to its health-benefiting activities, including disinfection, treatment sexual infection, diarrhoea, acute and chronic dysentery, red-eye swelling as well as pain, heat, thirst, hypertension, palpitation, gastrointestinal discomfort, and loss of appetite. ⋯ Recent findings regarding the main phytochemical and pharmacological properties of C. tinctorial have confirmed its traditional uses in anti-infection and treatment of chronic metabolic disease and, more importantly, have revealed the plant as a valuable medicinal plant resource for the treatment of a wide range of diseases. The available reports indicated that most of the bioactivities in C. tinctorial could be attributed to flavonoids. However, higher quality studies on animals and humans studies are required to explore the efficacy and mechanism of action of C. tinctoria in future.
-
Scrophularia ningpoensis Hemsl. (known as Xuanshen) has been used in China for centuries as a traditional medicinal plant to treat numerous diseases including inflammation, hypertension, cancer, and diabetes. ⋯ Modern pharmacological studies have confirmed that S. ningpoensis is a valuable Chinese medicinal herb with many pharmacological uses in the treatment of cardiovascular, diabetic, and liver diseases. Most of the S. ningpoensis activity may be attributed to iridoid glycosides and phenylpropanoid glycosides; however, detailed information on the molecular mechanisms, metabolic activity, toxicology, and structure-function relationships of active components is limited. Further comprehensive research to evaluate the medicinal properties of S. ningpoensis is needed.
-
Curcuma wenyujin is a multifunctional medicinal plant belonging to the ginger family (Zingiberaceae). It has been used to treat blood stasis, promote the flow of qi, dredge the meridians, and relieve pain for more than 1500 years. Its raw rhizomes, steamed rhizomes, and steamed roots constitute three herbal medicines currently listed in the Chinese Pharmacopoeia: pian-jiang-huang (), wen-e-zhu () and wen-yu-jin (), respectively. ⋯ Until now, significant progress has been witnessed in phytochemistry and pharmacology of C. wenyujin. Some traditional uses of C. wenyujin have been supported by modern pharmacological studies. However, the establishment of quality control standards and additional clinical studies are warranted.
-
Nepeta is a multiregional genus of the "Lamiaceae" (Labiatae or Mint) family. Species of Nepeta are a valuable part of traditional medicine and used extensively, particularly in the Himalayan region of India (Uttarakhand, Himachal Pradesh, Jammu and Kashmir, Leh-Ladakh), Pakistan (Khyber Pakhtunkhwaand Pakistani Kashmir), Nepal (Baglund district), also in China and hilly regions of Turkey and Iran. Nepeta species are extensively used as a remedy against a variety of ailments and conditions like chicken pox, tuberculosis, malaria, pneumonia, influenza, measles, stomach disorders, eye complaints, respiratory disorders, asthma, colds, coughs etc. AIM OF THE REVIEW: The main aim of this review is to present a comprehensive and detailed study on traditional uses, pharmacology, phytochemistry, toxicology of Nepeta species and suggest future direction on the design and conduct of various preparations, either alone or in blends with prevailing conventional remedies. The review also emphasizes encouraging researchers towards the wide range of pharmaceutical applications of the various species of Nepeta for their better use and exploration in the future. ⋯ The species of the genus Nepeta contains a rich source of various bioactive compounds, which are well tolerated as traditional medicines. In fact, different species of Nepeta are widely used in a variety of traditional medicinal systems all around the world. Owing to the variety of pharmacological properties of Nepeta species, more comprehensive and inclusive clinical trials are necessary for the utilization of different Nepeta species against the treatment of a wide range of ailments. There are also various other uses such as food, cosmetic and agriculture that can be investigated or explored in future. Some of the major domains that can be explored within this genus are the investigation of different species for their unexplored biological potential, isolation and characterization of new bioactive constituents and finally, investigation of new applications and possible commercialization of these bioactive leads. No doubt, there are various viable research domains outside those discussed above, but presently for the purposes of this review we will only emphasize the activities herein.