Neurological research
-
Neurological research · Oct 2013
The dynamic triple peak impact factor in traumatic brain injury influences native protein structures in gray and white matter as measured with computational simulation.
Traumatic brain injuries (TBIs) cause a substantial burden to the patient, relatives, and the society as a whole. Much experience and knowledge during the last two decades have improved the neurosurgical treatment as well as the outcome. However, there is still much debate on what actually happens when external kinetic energy is transferred to the head immediately after a TBI. Better knowledge about the cascades of mechanical events at the time of accident is a prerequisite to further reduce the burden in all categories and improve the neurosurgical care of TBI patients. ⋯ The present study shows for the first time that following an impact of 10 m/s, 88·31% of the calculated external kinetic energy was absorbed by the external parts of the head before the remaining energy of 5·19% reached the GM and WM. GM absorbed about twice as much of the energy compared to the WM. It is suggested that the dynamic triple peak impact factor may have a profound effect on native protein structures in the cerebral metabolism after a TBI.