Journal of neuroscience methods
-
J. Neurosci. Methods · Feb 2004
Comparative StudyDesign and validation of a computer-based sleep-scoring algorithm.
A computer-based sleep scoring algorithm was devised for the real time scoring of sleep-wake state in Wistar rats. Electroencephalogram (EEG) amplitude (microV(rms)) was measured in the following frequency bands: delta (delta; 1.5-6 Hz), theta (Theta; 6-10 Hz), alpha (alpha; 10.5-15 Hz), beta (beta; 22-30 Hz), and gamma (gamma; 35-45 Hz). Electromyographic (EMG) signals (microV(rms)) were recorded from the levator auris longus (neck) muscle, as this yielded a significantly higher algorithm accuracy than the spinodeltoid (shoulder) or temporalis (head) muscle EMGs (ANOVA; P=0.009). ⋯ When all three steps were used, overall accuracy in scoring wake, NREM and REM sleep was determined to be 87.9%. All accuracies were derived from comparisons with unequivocally-scored epochs from four 90-min recordings as defined by an experienced human rater. The algorithms were as reliable as the agreement between three human scorers (88%).