Journal of neuroscience methods
-
J. Neurosci. Methods · Apr 2005
Influence of high motor unit synchronization levels on non-linear and spectral variables of the surface EMG.
The aim of this study was to investigate the influence of high degrees of motor unit synchronization on surface EMG variables extracted by linear and non-linear analysis techniques. For this purpose, spectral and recurrent quantification analysis (RQA) were applied to both simulated and experimental EMG signals. Synthetic surface EMG signals were generated with a model of volume conductor comprising muscle, fat, and skin tissues. ⋯ E., 85.4 +/- 0.8%) than during the voluntary contraction (which partly suppressed tremor; 60.0 +/- 2.3%; P < 0.01). On the contrary, MNF did not depend on the condition (114.3 +/- 1.5 Hz and 118.0 +/- 0.8 Hz for the resting and voluntary contraction, respectively), confirming the simulation results. Overall, these results indicated that linear and non-linear analyses of the surface EMG may have different sensitivities to the underlying physiological mechanisms in specific conditions, thus their joint use provides a more complete view of the muscle status than spectral analysis only.
-
Photoaffinity labeling is a positive function approach that has been used in an effort to identify the cocaine-binding site on the dopamine transporter (DAT). Radioactive and non-radioactive analogs of cocaine and other dopamine uptake blockers are used to irreversibly label the DAT ligand-binding site and the protein is subjected to chemical or enzymatic treatments that cleave at specific amino acid residues. Analysis of cleavage products from radioactively photolabeled DAT using epitope-specific immunoprecipitation, gel electrophoresis, and autoradiography has identified the site of origin in the primary sequence of labeled fragments as small as 4 kDa. ⋯ Fragment retention times are compared to calculated retention times of predicted digest peptides and to chemically or photochemically labeled synthetic peptides. The presence of authentic DAT sequence in HPLC fractions of digests from DAT labeled with non-radioactive ligands is further supported by MALDI and nanoelectrospray mass spectrometry. Using these methods we have identified two distinct regions of DAT that interact with multiple structurally related and diverse irreversible ligands, suggesting that these regions may be involved in the formation of ligand binding sites.