Journal of neuroscience methods
-
J. Neurosci. Methods · Jan 2008
A novel automated method for measuring the effect of analgesics on formalin-evoked licking behavior in rats.
The behavioral assessment of pain is essential for the analysis of pain mechanisms and the evaluation of analgesic drugs. The formalin test is one of such methods widely used as a model of injury-induced pain in rodents. This test is manually demanding and the recording of results is left to the subjectivity of the experimenters. ⋯ In addition, frames in which moving velocity of these markers is less than 2.5mm/s was neglected for calculation in order to eliminate sedative effect on the recorded data. On these conditions, subcutaneous administration of morphine in rats dose-dependently decreased formalin-elicited nociceptive responses. These results suggest that under optimal conditions the automated technique when applied to pharmacological studies are more reliable and efficient than if they are manually recorded.
-
J. Neurosci. Methods · Jan 2008
Lentiviral-mediated targeted transgene expression in dorsal spinal cord glia: tool for the study of glial cell implication in mechanisms underlying chronic pain development.
Activated glial cells in the dorsal spinal cord take an important part in the development of pain after peripheral nerve injury. Our understanding of mechanisms involved in functional changes of spinal glia remains incomplete. Excepting drugs that completely disrupt glial function, pharmacological studies fail to target glia and to modify locally its function in order to really discriminate the role of neuronal versus glial cells in chronic pain. ⋯ EGFP transgene was mainly expressed in astrocytes and microglial cells whereas less than 9% of cells containing EGFP were neurons. Notably, LV-EGFP administration and EGFP overexpression in glial cells did neither modify glial activity, nor alter animal's nociceptive or locomotor behaviors. Targeted modulation of the expression of gene of interest in glial cells, closely restricted to a particular region of the spinal cord, may thus represent an interesting approach to refine the understanding of mechanisms by which spinal glial cells participate in pain processing.