Journal of neuroscience methods
-
J. Neurosci. Methods · Nov 2009
A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells.
Neuronal loss is a common feature of many neurological disorders, including stroke, Parkinson's disease, Alzheimer's disease and traumatic brain injury. Human embryonic stem cell (hESC)-derived neural progenitors (NPs) may provide new ways of treatment for several diseases and injuries in the brain, as well as enhance our understanding of early human development. Here we report a method for rapid generation of proliferating NPs from feeder free cultures of undifferentiated hESCs. ⋯ After the first passage, adherent monolayer progenitors are derived that express early neuroectodermal and progenitor markers, such as Nestin, Sox1, Sox2, Sox3, Internexin, Musashi-1, NCAM, and Pax6. This novel protocol renders hESCs suitable for large scale progenitor production and long-term propagation, and the progenitors have the capacity to differentiate in vitro into all three neural lineages (neurons, astrocytes and oligodendrocytes). This method allows rapid, cost-efficient production of expandable progenitors that may be a source of cells for the restoration of cellular and functional loss after neurodegeneration and/or provide a useful source of progenitor cells for studying early brain development.
-
Continuous recording of Visual Evoked Potentials (VEPs) and functional Magnetic Resonance Imaging (fMRI) exploits the VEPs high temporal resolution and the fMRI high spatial resolution. In this work, we present a new method of continuous VEPs/fMRI recording to study visual function in seven normal subjects. Our real-time artifact filtering is characterized by a procedure based on an analytical study of echo-planar imaging (EPI) sequence parameters related electro-encephalogram (EEG)-artifact shapes. ⋯ No significant decrease in signal-to-noise ratio was observed in case of EEG recording simultaneously with MR acquisition; similarly, transient and steady-state VEPs parameters were comparable during fMRI acquisition and in the off-phase of fMRI recording. We also applied this method to one patient with optic neuritis, and, compared with controls, found different results. We suggest that our technique can be reliably used to investigate the function of human visual cortex and properly correlate the electrophysiological and functional neuroimaging related changes.
-
J. Neurosci. Methods · Nov 2009
Measuring and tracking eye movements of a behaving archer fish by real-time stereo vision.
The archer fish (Toxotes chatareus) exhibits unique visual behavior in that it is able to aim at and shoot down with a squirt of water insects resting on the foliage above water level and then feed on them. This extreme behavior requires excellent visual acuity, learning, and tight synchronization between the visual system and body motion. This behavior also raises many important questions, such as the fish's ability to compensate for air-water refraction and the neural mechanisms underlying target acquisition. ⋯ Based on a stereo vision system and a unique triangulation method that corrects for air-glass-water refraction, we are able to measure a full three-dimensional pose of the fish eye and body with high temporal and spatial resolution. Our method, being generic, can be applied to studying the behavior of marine animals in general. We demonstrate how data collected by our method may be used to show that the hunting behavior of the archer fish is composed of surfacing concomitant with rotating the body around the direction of the fish's fixed gaze towards the target, until the snout reaches in the correct shooting position at water level.