Journal of neuroscience methods
-
J. Neurosci. Methods · Jun 2009
Improving the recovery of S100B protein in cerebral microdialysis: implications for multimodal monitoring in neurocritical care.
Cerebral microdialysis is an established research tool that is used by an increasing number of neurocritical care units as a component of bedside multimodality monitoring. Body fluid biomarkers are an emerging tool for the assessment of brain injury. The correct interpretation of body fluid biomarker levels depends on the degree of recovery, i.e. relative recovery and the accuracy of the analytical technique. ⋯ Our data demonstrates that the 100 kDa MW cut-off catheter allows for the improved recovery of macromolecules in cerebral microdialysis research while maintaining the value of existing MD data for routine clinical use.
-
J. Neurosci. Methods · Jun 2009
Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations.
Spinal cord contusion and transection models are widely used for studying spinal cord injury (SCI). Clinically, however, other biomechanical injury mechanisms such as vertebral dislocation and distraction frequently occur, but these injuries are difficult to produce in animals. We mechanically characterize a vertebral clamping strategy that enables the modeling of vertebral dislocation and distraction injuries--in addition to the standard contusion paradigm--in the rat cervical spine. ⋯ The greatest deformations in node of Ranvier geometry occurred at the dislocation epicenter. Given the importance of white matter damage in SCI pathology, the distinctiveness of these injury patterns demonstrate that the dislocation and distraction injury models complement existing contusion models. Together, these three animal models span a broader clinical spectrum for more reliably gauging the potential human efficacy of therapeutic strategies.
-
J. Neurosci. Methods · Jun 2009
Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.
The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. ⋯ The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.
-
J. Neurosci. Methods · Jun 2009
Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability.
Brain slice preparations are well-established models for a wide spectrum of in vitro investigations in the neuroscience discipline. However, these investigations are limited to acute preparations or thin organotypic culture preparations due to the lack of a successful method that allows culturing of thick organotypic brain slices. Thick brain slice cultures suffer necrosis due to ischemia deep in the tissue resulting from a destroyed circulatory system and subsequent diffusion-limited supply of nutrients and oxygen. ⋯ Our perfusion method allows up to 84.6% viability (p<0.01) and up to 700 microm thickness, even after 5 DIV. Our results also confirm that these cultures are functionally active and have their in vivo cyto-architecture preserved. Prolonged viability of thick organotypic brain slice cultures will benefit scientists investigating network properties of intact organotypic neuronal networks in a reliable and repeatable manner.
-
J. Neurosci. Methods · Jun 2009
A cortical (V1) neurophysiological recording model for assessing the efficacy of retinal visual prostheses.
A significant barrier to the development of a retinal prosthesis that is capable of inducing spatially patterned visual percepts has been a lack of adequate models to assess the efficacy of various electrical stimulation algorithms. Toward this end, we developed an in vivo, normally sighted animal model that is based on primary visual cortex neurophysiological recordings of spiking and local-field potential activity. ⋯ Furthermore, our model indicates that the short latency response originates in widespread retinal locations that extend well beyond the location of the activated electrodes, whereas the long latency response has a more focal origin which corresponds to the location of the activated electrodes. The present work demonstrates the applicability of our model for the evaluation and development of electrical retinal stimulation methods using cortical recordings.