Journal of neuroscience methods
-
Epilepsy is a malfunction of the brain that affects over 50 million people worldwide. Epileptic seizures are usually characterized by an abnormal synchronized firing of neurons involved in the epileptic process. ⋯ There is now growing evidence that an improved understanding of the epileptic process can be achieved through the analysis of properties of epileptic brain networks and through the analysis of interactions in such networks. In this overview, we summarize recent methodological developments to assess synchronization phenomena in human epileptic brain networks and present findings obtained from analyses of brain electromagnetic signals recorded in epilepsy patients.
-
J. Neurosci. Methods · Sep 2009
A fully implanted drug delivery system for peripheral nerve blocks in behaving animals.
Inhibiting peripheral nerve function can be useful for many studies of the nervous system or motor control. Accomplishing this in a temporary fashion in animal models by using peripheral nerve blocks permits studies of the immediate effects of the loss, and/or any resulting short-term changes and adaptations in behavior or motor control, while avoiding the complications commonly associated with permanent lesions, such as sores or self-mutilation. We have developed a method of quickly and repeatedly inducing temporary, controlled motor deficits in rhesus macaque monkeys via a chronically implanted drug delivery system. ⋯ Using this assembly for median and ulnar nerve blocks routinely resulted in over 80% losses in hand and wrist strength for rhesus monkeys. The assembly was also effective for inducing ambulatory motor deficits in rabbits through blocks of the sciatic nerve. Interestingly, while standard anesthetics were sufficient for the rabbit nerve blocks, the inclusion of epinephrine was essential for achieving significant motor blockade in the monkeys.