Journal of neuroscience methods
-
J. Neurosci. Methods · Feb 2010
Development of animal model for vasculatic neuropathy: Induction by ischemic-reperfusion in the rat femoral artery.
Ischemic-reperfusion (I/R) is common in various pathological conditions like diabetic complication, complex regional pain syndrome type II (CRPS II), necrotizing vascular occlusive disease and trauma. We have developed an animal model of ischemic-reperfusion injury induced nociceptive sensory neuropathy in rats. The model was validated after 2, 4 and 6h of ischemia followed by prolonged reperfusion. ⋯ Histopathological study had revealed the decrease in nerve fiber density in the moderate and severe I/R groups. We selected the moderate (4h) ischemic-reperfusion injury as beneficial model because of the good correlation with clinical status for the development of neuropathy in human associated with severe pain disorders. This model can be used to explore pathophysiological mechanisms implied in the genesis of neuropathic pain and also to evaluate the new analgesic agents, peripheral neuro-vasoactive substances and neuroprotective drugs.
-
J. Neurosci. Methods · Feb 2010
Correction of low-frequency physiological noise from the resting state BOLD fMRI--Effect on ICA default mode analysis at 1.5 T.
Confounding low-frequency fluctuation (LFF) physiological noise is a concern for functional connectivity analyses in blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). Using estimates of LFF physiological noise derived from measured cardiac and respiration signals, noise can be filtered from the time series thus improving the results of functional connectivity analysis. The ability of spatial independent component analysis (ICA) to separate LFF physiological noise from the default mode network (DMN), which overlap each other spatially and occur at similar frequencies, has remained an open question. ⋯ A confounding factor in the analysis is the susceptibility of the ICA decomposition for data changes yielding different DMN splitting between and after physiological correction conditions without comparable true change in the data. This issue is mitigated at higher ICA model orders. The results suggest that subject-level DMN can for some subjects be optimized by physiological correction, but on the group-level this contribution is minor.