Journal of neuroscience methods
-
J. Neurosci. Methods · Jan 2011
Relationship between orientation to a blast and pressure wave propagation inside the rat brain.
Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. ⋯ Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain.
-
J. Neurosci. Methods · Jan 2011
Comparative StudyCerebral arterial gas embolism in swine. Comparison of two sites for air injection.
Cerebral arterial gas embolism is a risk in diving and occurs as a complication in surgery and interventional radiology. Swine models for cerebral arterial gas embolism have been used in the past. However, injection of air into the main artery feeding the pig brain - the ascending pharyngeal artery - might be complicated by the presence of the carotid rete, an arteriolar network at the base of the brain. ⋯ Intracranial pressure, brain oxygen tension and brain lactate correlated after injection of air into the ascending pharyngeal artery, but not after injection into the external carotid artery. Our model is suitable for investigation of cerebral arterial gas embolism. The ascending pharyngeal artery is the most appropriate vessel for air injection.