Journal of neuroscience methods
-
J. Neurosci. Methods · May 2004
Comparative StudyNew lumbar method for monitoring cerebrospinal fluid pressure in rats.
Monitoring cerebrospinal fluid pressure or intracranial pressure (ICP) is crucial in the study of neurosurgical disorders. In the present study, we report a new lumbar method for monitoring ICP in rats. ⋯ This new lumbar-ICP method is simple, safe, easy, and reliable in rats. Continued lumbar-ICP measurements provided monitoring for up to 24 h after experimental manipulation.
-
J. Neurosci. Methods · Apr 2004
Comparative StudyEstimation of average muscle fiber conduction velocity from two-dimensional surface EMG recordings.
We propose a novel method for the estimation of muscle fiber conduction velocity (CV) from surface EMG recordings. The approach is based on the analysis of signals detected along a number of linear electrode arrays parallel to the fiber direction, thus collected by a bi-dimensional (2-D) array (matrix) of electrodes. The information provided by the 2-D array is used to derive a maximum likelihood estimator which can be applied to any number of signals and which may account for missing channels in the matrix. ⋯ The method proposed is applied to signals collected from the biceps brachii muscle of eight healthy subjects during isometric, constant force contractions at 50% of the maximal voluntary contraction torque. It is shown that CV estimation standard deviation and sensitivity to electrode displacements significantly decrease by the application of the method proposed with respect to classic CV estimation techniques. The method promises to be a useful tool when average CV is estimated for muscle assessment and diagnostic purposes.
-
J. Neurosci. Methods · Apr 2004
Comparative StudyWavelet-based processing of neuronal spike trains prior to discriminant analysis.
Investigations of neural coding in many brain systems have focused on the role of spike rate and timing as two means of encoding information within a spike train. Recently, statistical pattern recognition methods, such as linear discriminant analysis (LDA), have emerged as a standard approach for examining neural codes. These methods work well when data sets are over-determined (i.e., there are more observations than predictor variables). ⋯ Nature 405 (2000) 567-71]. In addition, simulated spike trains that differed only in the timing of spikes are used to show that DP outperforms another method for preprocessing spike trains, principal component analysis (PCA) [Richmond and Optican J. Neurophysiol. 57 (1987) 147-61].
-
J. Neurosci. Methods · Mar 2004
A method for positioning electrodes during surface EMG recordings in lower limb muscles.
The aim of this work is to provide information about the degree of inter-subject uniformity of location of innervation zone (IZ) in 13 superficial muscles of the lower limb. The availability of such information will allow researchers to standardize and optimize their electrode positioning procedure and to obtain accurate and repeatable estimates of surface electromyography (sEMG) signal amplitude, spectral variables and muscle fiber conduction velocity. ⋯ This study identifies optimal electrode sites for muscles in the lower extremity by providing a standard landmarking technique for the localization of the IZ of each muscle so that surface EMG electrodes can be properly positioned between the IZ and a tendon.
-
J. Neurosci. Methods · Feb 2004
Comparative StudyDesign and validation of a computer-based sleep-scoring algorithm.
A computer-based sleep scoring algorithm was devised for the real time scoring of sleep-wake state in Wistar rats. Electroencephalogram (EEG) amplitude (microV(rms)) was measured in the following frequency bands: delta (delta; 1.5-6 Hz), theta (Theta; 6-10 Hz), alpha (alpha; 10.5-15 Hz), beta (beta; 22-30 Hz), and gamma (gamma; 35-45 Hz). Electromyographic (EMG) signals (microV(rms)) were recorded from the levator auris longus (neck) muscle, as this yielded a significantly higher algorithm accuracy than the spinodeltoid (shoulder) or temporalis (head) muscle EMGs (ANOVA; P=0.009). ⋯ When all three steps were used, overall accuracy in scoring wake, NREM and REM sleep was determined to be 87.9%. All accuracies were derived from comparisons with unequivocally-scored epochs from four 90-min recordings as defined by an experienced human rater. The algorithms were as reliable as the agreement between three human scorers (88%).