Journal of neuroscience methods
-
J. Neurosci. Methods · Jul 2001
Visualization of rat pial microcirculation using the novel orthogonal polarized spectral (OPS) imaging after brain injury.
Recently, the novel optical system, orthogonal polarized spectral (OPS) imaging was developed to visualize microcirculation. Investigation of changes in microcirculation is essential for physiological, pathophysiological, and pharmacological studies. In the present study applicability of OPS imaging was assessed to study pial microcirculation in normal and traumatized rat brain. ⋯ In venules, mean flow velocity of 0.68+/-0.08 mm/s was significantly decreased by 50% at 30 min after trauma. OPS imaging is an easy to use optical system allowing to generate high quality images and to reliably investigate pial microcirculation without having to remove the dura. This technique opens the possibility to perform longitudinal studies investigating changes in pial microcirculation.
-
J. Neurosci. Methods · Feb 2001
A two-compartment in vitro model for studies of modulation of nociceptive transmission.
Here we present a two-compartment in vitro model in which embryonic rat dorsal root ganglia (DRG) neurons are cultured separately from their target dorsal horn neurons. Although separated, synaptic contact can be established between the peripheral and central neurons since the system allows the DRG axons to project into the other compartment, which contains a network of dorsal horn neurons. The efficacy of the model was evaluated by immunocytochemical, calcium imaging and electrophysiological experiments. ⋯ This in turn gave rise to increased postsynaptic activity in the network of dorsal horn neurons. The model offers a high degree of efficiency since large numbers of DRG axons can be stimulated simultaneously, thus permitting recording of strong output responses from the dorsal horn neurons. This in vitro model provides a means for studying the mechanisms by which modulatory factors, such as immunoregulatory molecules, applied at either the PNS or the CNS level, can affect synaptic activity and nociceptive transmission in single neurons or network of neurons in the dorsal horn.
-
J. Neurosci. Methods · Dec 2000
Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces.
The control of neuronal cell position and outgrowth is of fundamental interest in the development of applications ranging from cellular biosensors to tissue engineering. We have produced rectangular networks of functional rat hippocampal neurons on silicon oxide surfaces. Attachment and network formation of neurons was guided by a geometrical grid pattern of the adhesion peptide PA22-2 which matches in sequence a part of the A-chain of laminin. ⋯ Reliability and reproducibility of neuronal network formation depended on the geometry, line width and node diameter of the grid pattern. The immobilised neurons showed resting membrane potentials comparable with controls and, already after 1 day of culture, were capable of eliciting action potentials. The suitability of the immobilised neurons for the study of man-made neural networks and for multi-site recordings from a functional neuronal network is discussed.
-
J. Neurosci. Methods · Oct 2000
Modeling axonal injury in vitro: injury and regeneration following acute neuritic trauma.
Traumatic injury to axons was modeled in vitro using sympathetic principal neurons from the rat superior cervical ganglion. Neurons were grown as a pure culture on collagen in parallel tracks, with cell somata confined to the center, and neurites occupying the periphery of the culture dish. Growing as fascicles on tracks, the neurites demonstrated periodic varicosities. ⋯ This was followed by neurite regeneration, with the injured segment being traversed within 36 h at an average rate of regeneration of 595 +/- 15 microm/day. The distal neurite segments showed degenerative changes within 1 h following transection, with initial receding of neurites progressing to vacuolation, beading, blebbing, and eventual detachment from the underlying matrix. This in vitro model of axonal injury allows neuritic injury to be studied at the cellular and molecular levels, and also provides a unique opportunity to test potential neuromodulatory and neuroprotective strategies.
-
J. Neurosci. Methods · Apr 2000
A technique to prevent dural adhesions to chronically implanted microelectrode arrays.
Minimizing relative movements between neural tissues and arrays of microelectrodes chronically implanted into them is expected to greatly enhance the capacity of the microelectrodes to record from single cortical neurons on a long-term basis. We describe a new surgical technique to minimize the formation of adhesions between the dura and an implanted electrode array using a 12 microm (0.5 mil) thick sheet of Teflon film positioned between the array and the dura. A total of 15 cats were implanted using this technique. ⋯ No significant change was found in the density of cell bodies around implanted electrodes of four of the implanted electrode arrays. However, histological evaluation of the implant sites revealed evidence of meningeal proliferation beneath the arrays. The technique described is shown to be effective at preventing adhesions between implanted electrode arrays and improve the characteristics of chronic recordings obtained with these structures.